Каким образом может осуществляться теплопередача в жидкостях

Каким образом может осуществляться теплопередача в жидкостях?а)конвекцией и теплопроводностьюб)только теплопроводностьюв)только конвекцией

Каким образом может осуществляться теплопередача в жидкостях

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

 Решите пожалуйста задачу вместе с дано,си,и решением полность пожалуйста .Автомобиль движущийся со скорость 10м/с начал тормозить с ускорением 1м:с(в квадрате).Сколько времени пройдёт до остановки автомобиля?

Page 3

1.Как измерить (примерно), сколько зерен риса помещается в стакан?что вам для этого понадобится?
2. Кафельная плитка имеет форму квадрата со стороной 15 см. Сколько плиток понадобиться для укладки кафелем стены площадью 5 м в квадрате?

Page 4

Можно ли считать материальной точкой поезд при определении:1)пути,который он проехал за 2 часа,2 секунды( ОТВЕТ ПОЯСНИТЬ)

Page 5

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 6

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 7

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 8

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 9

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 10

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 11

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 12

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 13

На что больше расходуется энергия: на нагревание чугунного горшка или воды, налитой в него, если их массы одинаковы?

Page 14

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 15

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 16

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Page 17

Протон и альфа-частица влетают в однородное магнитное поле перпендикулярно линиям индукции. Сравнить радиусы окружностей, которые описывают частицы, если у них одинаковы а) скорости б)энергии

Page 18

поезд движется равнозаменленно имея V0=54км/ч и ускорение 0,5 м/с через какое время и на каком расстоянии от начала торможения поезд остановится?

Page 19

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

0

Задача. За 8 с до финиша скорость бегуна равнялась 15км/ч, а на финише-22,2 км/ч. Найти ускорение (в м/с кв),считая движение велосипедиста равноускоренным.

Ответ 0,25м/с квЗадача 2 С каким ускорением движется тело,если в восьмую секунду движения оно прошло 15м? Начальная скорость движения равна нулю.Найти путь,пройденный в пятнадцатую секунду.

Ответ 2м/с кв,29м

Помогите решить распишите полностью решение пожалуйста

1

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

2

1) в Каких телах не может происходить конвекция   а) твердых телах  b) в жидкостях  c) в газах  d) в твердых и жидких   e) в жидкостях и газах2) Атом состоит  а) из ядра и молекул  b) ядра и электронов  c) электронов и протонов   d) протонов и нейронов   e) электронов3) Как изменяется сила кулоновского взаимодействия двух небольших заряженных шаров при увеличении заряда каждого из них в 2 раза, если расстояние между ними остается неизменным  а) увеличится в 4 раза  b)  увеличится в  2 раза   c) не изменится  d) уменьшится в 2 раза  e) уменьшится в 4 раза4) Еденица измерения потонциала в СИ?  а)  B  b) Bт  c) Кл  d) H/Кл  e) м5) сила тока в электрической цепи равна 2 А, сопротивление электрической лампы 14 Ом. Чему равно напряжение в лампе? а) 28В b) 7В c) 0.125В d) 16В e) 1.25В6) при параллельном соединении проводников напряжение в цепи равна a) U = U1 + U2 + U3 + … = Un b) U = I * R  c) U = E * d  d) U = U1 = U2 = U3 = … = Un e) U=A/q7) Электрический ток в газах представляет собой направленное движение? a) электронов b) электронов и положительных ионов  c) электронов , а также положительных и отрицательных ионов  d) отрицательных ионов  e) положительных и отрицательных ионов 8) —9) Луч падает на зеркальную поверхность под углом 30гр., чему равен угол отражения?  a) 50  b) 60 c) 20 d) 90 e) 3010) закон объясняющий появления тени a) закон отражения света b) закон прямолинейного распространения света c) закон преломления света d) закон преломления и отражения света e) все три закона

3

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

4

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

5

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

6

Определите период колебаний , частоту , длину волны если индуктивность катушки 100 мгн , электроемкость 50нф

Источник: https://znanija.site/fizika/2659443.html

Сопряженная теплопередача

Каким образом может осуществляться теплопередача в жидкостях

В этой статье мы объясним, что такое сопряженная теплопередача, и продемонстрируем несколько примеров. Сопряженной теплопередачей называется теплообмен в твердых телах и жидкостях.

В твердых телах основным способом теплопередачи является теплопроводность, а для жидкостей более характерна конвекция. Явление сопряженной теплопередачи проявляется во множестве ситуаций.

Например, конструкция радиатора оптимизируется для того, чтобы объединить теплопередачу посредством теплопроводности материала, из которого изготовлен радиатор, и конвекцию окружающей его жидкости.

Теплопередача в твердом теле

В большинстве случаев теплопередача в твердых телах, вызванная исключительно теплопроводностью материала, описывается законом Фурье, согласно которому плотность теплового потока, q, пропорциональна градиенту температуры: q=-kabla T.

Для нестационарной задачи поле температуры в неподвижном твердом теле следует уравнению теплопроводности в следующей форме:

\rho C_{p} \frac{\partial T}{\partial t}=abla \cdot (kabla T) +Q

Из-за движения жидкости в уравнение добавляются еще три слагаемых:

  1. Перемещение жидкости также предполагает передачу энергии, что проявляется в виде конвекционной составляющей в уравнении теплового баланса. В зависимости от тепловых характеристик жидкости и режимов потока может преобладать теплопередача посредством либо конвекции, либо теплопроводности.
  2. Вязкостные явления в потоке жидкости приводят к ее нагреву. Диссипативным эффектом часто пренебрегают, однако в высокоскоростных потоках вязких жидкостей его влияние может быть существенно.
  3. Поскольку плотность жидкости зависит от температуры, в уравнение теплового баланса добавляется новое слагаемое — работа давления. Примером может служить хорошо известный пример образования тепла при сжатии воздуха.

Учет теплопроводности и слагаемых, описывающих перечисленные механизмы, приводит к следующему нестационарному уравнению теплопроводности для поля температуры в жидкости:

\rho C_{p} \frac{\partial T}{\partial t}+\rho C_p\bold{u}\cdotabla T= \alpha_p {T}\left( \frac{\partial p_\mathrm{A}}{\partial t}+\bold{u}\cdotabla p_\mathrm{A}\right)+\tau : S+abla \cdot (kabla T) +Q

Возможность эффективного объединения процессов теплопередачи в твердых телах и жидкостях является ключевой для проектирования высокоэффективных охладителей, нагревателей и теплообменников.

Обычно для передачи теплоты на большие расстояния используются жидкие теплоносители. Самым распространенным способом обеспечения высокой интенсивности теплопередачи является вынужденная конвекция. В некоторых случаях рабочие характеристики подобных устройств становятся еще лучше благодаря сочетанию конвекции и фазовых переходов (например, кипения воды).

Несмотря на это, в теплообменнике также нужны твердые тела, которые разделяют жидкости и позволяют им передавать тепло, но не смешиваться друг с другом.

Поле течения и температуры в кожухотрубном теплообменнике демонстрирует процесс теплопередачи между двумя разделенными тонкой металлической стенкой жидкостями.

Радиаторы обычно изготавливают из металла, обладающего высокой теплопроводностью (например, меди или алюминия). Они рассеивают тепло, увеличивая площадь поверхности теплообмена между твердотельной частью конструкции и окружающей ее жидкостью.

Поле температуры в блоке питания. Температура снижается за счет охлаждения воздухом, продуваемым с помощью вентилятора и перфорированной решетки. Два алюминиевых ребра используются для увеличения площади поверхности теплообмена между потоком воздуха и электронными компонентами.

Энергосбережение

Процессы теплообмена в жидкостях и твердых телах также могут быть объединены для сокращения тепловых потерь в различных устройствах.

Поскольку большинство газов (особенно при низком давлении) обладают малой теплопроводностью, они могут использоваться для теплоизоляции… если только они не находятся в движении. Чаще всего именно газы выбирают в качестве изоляционного материала из-за их малой плотности.

В любом случае важно ограничить теплопередачу посредством конвекции, уменьшая интенсивность свободной конвекции. Продуманное размещение перегородок и небольших полостей позволяет регулировать свободную конвекцию.

[attention type=yellow]

Применение этих же принципов в микроскопических масштабах приводит к идее теплоизолирующей пены, в которой небольшие воздушные полости (пузырьки) заключены внутри пенистого материала (например, полиуретана), что обеспечивает прекрасные изоляционные характеристики материала и его малый вес.

[/attention]

Поперечное сечение окна (слева) и увеличенная область оконной рамы (справа).

Показатели температуры в оконной раме и поперечном сечении остекления согласно стандарту ISO 10077-2:2012 (тепловые характеристики окон).

Граница жидкости и твердого тела

Поле температуры и тепловой поток на границе взаимодействия жидкости и твердого тела остаются непрерывными.

Однако поле температуры может быстро изменяться в движущейся жидкости: у поверхности твердого тела температуры жидкости и твердого тела близки; чем дальше от границы, тем ближе температура жидкости к температуре на входе или к температуре окружающей среды.

Расстояние, на котором температура жидкости изменяется от температуры твердого тела до температуры окружающей среды, называется тепловым пограничным слоем.

Относительные размеры теплового и динамического пограничных слоев отражаются в величине числа Прандтля (Pr=C_p \mu/k): для того чтобы оно было равно единице, толщины теплового и динамического пограничных слоев должны совпадать. Более толстый динамический погранслой приводит к тому, что число Прандтля становится больше единицы.

Верно и обратное: при числе Прандтля меньше единицы толщина теплового пограничного слоя превышает толщину динамического пограничного слоя. Число Прандтля для воздуха при атмосферном давлении и 20 °C равняется 0,7. Это объясняется тем, что для воздуха размеры динамического и теплового пограничного слоев схожи, при этом толщина динамического погранслоя чуть меньше толщины теплового. Для воды при температуре 20 °C число Прандтля составляет около 7, поэтому в воде изменение температуры рядом со стенкой происходит быстрее, чем изменение скорости.

Нормализованные профили температуры (красный) и скорости (синий) для свободной конвекции воздуха рядом с холодной твердой поверхностью.

Свободная конвекция

Свободная конвекция возникает тогда, когда жидкость приводится в движение силами плавучести. В зависимости от ожидаемых тепловых характеристик естественная конвекция может быть как полезной (например, в случае охлаждения), так и нежелательной (например, свободная конвекция в слое термоизоляции).

Число Рэлея, обозначаемое как Ra, используется для определения режима течения, обусловленного свободной конвекцией и сопутствующей теплопередачей. Число Рэлея определяется теплофизическими свойствами жидкости, характерными размером L и разностью температур \Delta T, обычно задаваемой окружающими твердыми телами:

Ra=\frac{\rho2g\alpha_p C_p}{\mu k}\Delta T L3

Число Грасгофа — еще один показатель режима течения, представляющий собой отношение сил плавучести и вязкостных сил.

Gr=\frac{\rho2g\alpha_p}{\mu2}\Delta T L3

Число Рэлея может быть выражено через числа Прандтля и Грасгофа как Ra=Pr Gr.

Когда величина числа Рэлея невелика (обычно

Источник: https://www.comsol.ru/blogs/conjugate-heat-transfer/

Внутренняя энергия

Каким образом может осуществляться теплопередача в жидкостях

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: внутренняя энергия, теплопередача, виды теплопередачи

Частицы любого тела — атомы или молекулы — совершают хаотическое непрекращающееся движение (так называемое тепловое движение). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела — это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом.

Внутренняя энергия термодинамической системы — это сумма внутренних энергий тел, входящих в систему.

[attention type=red]

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

[/attention]

1. Кинетическая энергия непрерывного хаотического движения частиц тела.2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.3. Энергия электронов в атомах.

4. Внутриядерная энергия.

В случае простейшей модели вещества — идеального газа — для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии).

Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов.

Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

или

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма — ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы.

А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е.

от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

[attention type=green]

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

[/attention]

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

• совершение механической работы;
• теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь :-) Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура — это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы — работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики).

В ходе такого процесса воздух будет охлаждаться — его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.

) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача — это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы. Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом.

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню — от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1)(Изображение с сайта educationalelectronicsusa.com).

Рис. 1. Теплопроводность

Теплопроводность — это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела.

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше.

[attention type=yellow]

Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом.

[/attention]

Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела — такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи — конвекции.

Конвекция

Конвекция — это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества.

Воздух вблизи батареи нагревается и расширяется.

Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку.

На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции — распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать.

[attention type=red]

Если радиатор установить под потолком, то никакая циркуляция не возникнет — тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты.

[/attention]

По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи — тепловое излучение. Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством.

Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию).

В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле…

В результате развития этого процесса в пространстве распространяется электромагнитная волна —«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой — в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет — частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет — это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше — частоты ультрафиолетового излучения.

[attention type=green]

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны.

[/attention]

Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны.

Эти волны и называются тепловым излучением — в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот.

Железный гвоздь можно раскалить докрасна — довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона.

А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 3)(изображения с сайта beodom.com).

Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

Источник: https://ege-study.ru/ru/ege/materialy/fizika/vnutrennyaya-energiya/

Виды теплопередачи: теплопроводность, конвекция, излучение – FIZI4KA

Каким образом может осуществляться теплопередача в жидкостях

ОГЭ 2018 по физике ›

1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.

Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.

2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества.

Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее.

Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.

Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.

Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.

3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.

Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.

Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения.

Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах.

Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.

4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.

[attention type=yellow]

Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.

[/attention]

Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается.

На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д.

Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).

Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.

Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.

Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.

Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.

5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.

Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).

Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха.

[attention type=red]

Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к.

[/attention]

плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.

Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.

Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.

Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.

Путём излучения энергия передаётся от Солнца к Земле.

Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.

  • Примеры заданий
  • Ответы

Часть 1

1. В твёрдых телах теплопередача может осуществляться путём

1) конвекции2) излучения и конвекции3) теплопроводности

4) конвекции и теплопроводности

2. Теплопередача путём конвекции может происходить

1) только в газах2) только в жидкостях3) только в газах и жидкостях

4) в газах, жидкостях и твёрдых телах

3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?

1) только с помощью теплопроводности2) только с помощью конвекции3) только с помощью излучения

4) всеми тремя способами

4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?

1) только теплопроводность2) только конвекция3) излучение и теплопроводность

4) конвекция и теплопроводность

5. Какой вид теплопередачи не сопровождается переносом вещества?

1) только теплопроводность2) только конвекция3) только излучение

4) только теплопроводность и излучение

6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?

1) только теплопроводность2) конвекция и теплопроводность3) излучение и теплопроводность

4) только конвекция

7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.

В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из

1) газобетона2) железобетона3) силикатного кирпича

4) дерева

8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?

1) в металлической2) в пластмассовой3) одновременно

4) скорость остывания воды зависит от её температуры

9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?

10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?

1) Температура воды не изменится ни в той, ни в другой кастрюле.2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.

4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.

11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.

3) В процессе передачи энергии давление воздуха в коробке увеличивалось.4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.

5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

[attention type=green]

1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.

[/attention]

3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.

5) Стекло обладает лучшей теплопроводностью, чем металл.

Ответы

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/vidy-teploperedachi-teploprovodnost-konvekcija-izluchenie.html

Теплообмен

Каким образом может осуществляться теплопередача в жидкостях

Теплообмен — это процесс изменения внутренней энергии без совершения работы над телом или самим телом.
Теплообмен всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.Когда температуры тел выравниваются, теплообмен прекращается.

Теплообмен может осуществляться тремя способами:

  1. теплопроводностью
  2. конвекцией
  3. излучением

Излучение

Излучение — электромагнитное излучение, испускаемое за счет внутренней энергии веществом, находящимся при определенной температуре.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно черного тела, описывается законом Стефана — Больцмана.


Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Передача энергии излучением отличается от других видов теплопередачи: она может осуществляться в полном вакууме.

Излучают энергию все тела: и сильно нагретые, и слабо, например тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передает оно путем излучения. При этом энергия частично поглощается этими телами, а частично отражается.

При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.
Тела с темной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность.

В то же время тела с темной поверхностью охлаждаются быстрее путем излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в темном.

Другие заметки по физике

Источник: http://edu.glavsprav.ru/info/teploobmen

Медик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: