Каковы размеры днк ширина и длина

Содержание
  1. Как работает днк? популярно объясняем азы генетики!
  2. Что такоек ДНК?
  3. И для чего нужна ДНК?
  4. Так, не торопитесь. Что такое РНК?
  5. А РНК чем занимается?
  6. Зачем нужны белки?
  7. Хорошо, а гены и ДНК – это не одно и то же?
  8. Внутри гена есть генетический код, правильно?
  9. Так как можно «запрограммировать» аминокислоту?
  10. Чем ген отличается от генома?
  11. Как редактируют ДНК?
  12. Интересные факты о ДНК человека
  13. На сколько процентов ДНК разных людей похожи между собой
  14. Какую длину имеют ДНК-клетки, если их растянуть?
  15. Объём молекул ДНК
  16. Сколько раз в день повреждается структура молекул?
  17. Самые малоизвестные факты о ДНК
  18. Что такое ДНК человека | Как расшифровывают результаты ДНК-анализа
  19. Значение ДНК в медицине
  20. Молекула ДНК
  21. Структура ДНК
  22. Состав ДНК
  23. Роль в клетке
  24. Что такое нуклеотиды
  25. Синтез белка
  26. Расшифровка ДНК
  27. ДНК. Механизмы хранения и обработки информации. Часть I
  28. Упаковка ДНК у бактерий
  29. Упаковка ДНК у эукариот
  30. Есть несколько уровней упаковки ДНК эукариот
  31. Днк (дезоксирибонуклеиновая кислота)
  32. Строение ДНК
  33. Строение нуклеотидов в молекуле ДНК
  34. Уровни структуры ДНК
  35.  Правило Чаргаффа
  36. Модель ДНК Уотсона-Крика
  37. Интересные факты о ДНК

Как работает днк? популярно объясняем азы генетики!

Каковы размеры днк ширина и длина

С появлением первых «ГМО-детей» в Китае и вообще потоком новостей о редактировании ДНК стало ясно, что разбираться в генетике жизненно важно каждому из нас. «Лаба» начинает серию простых гайдов, чтобы разобраться в этой науке. А то как-то совсем тревожно.

Что такоек ДНК?

ДНК (дезоксирибонуклеиновая кислота) – это макромолекула, главное хранилище наследственной информации и генетической программы развития и функционирования живого организма. 

ДНК имеет двухцепочечную структуру, где каждая цепочка представляет собой последовательность нуклеотидов: аденина, тимина, цитозина и гуанина. Нуклеотиды работают как небольшие «магнитики», которые сцепляют эти две цепочки водородными связями. Аденин соединяется только с тимином, а цитозин – с гуанином.

Длина ДНК обычно измеряется в числе пар нуклеотидов. У человека их около 3 миллиардов. ДНК человека сохраняется в ядре любой человеческой клетки в виде набора из 23 (в норме) хромосом.

И для чего нужна ДНК?

Соединенные вместе цепочки (знаменитая «двойная спираль» ДНК) представляют собой нечто похожее на винтовую лестницу. Каждая ступенька – это та самая пара нуклеотидов, например, аденин – тимин.

Крепления между ступеньками довольно прочные, а вот сами ступеньки – шаткие и легко переламываются, то есть разъединяются. И тогда на одной цепочке остается аденин, а на другой – тимин.

Это нужно для того, чтобы специальные белки могли «расплетать» ДНК и собирать на основе каждой цепочки комплементарную последовательности ДНК другую цепочку – РНК. 

Так, не торопитесь. Что такое РНК?

РНК (рибонуклеиновая кислота) – это одноцепочечная последовательность, которая может выполнять совершенно разные задачи. РНК – своего рода зеркальное отражение ДНК. Если в ДНК на одном месте стоит аденин, то в РНК на том же месте будет тимин, и наоборот. Помните: нуклеотиды похожи на магнитики и соединяются только по парам.

Тем же самым зеркальным образом в РНК сохраняется та информация, что есть в ДНК.

А РНК чем занимается?

ДНК находится в ядре клетки, в специальных упаковках-хромосомах. А вот основная работа по синтезу белков происходит в цитоплазме клетки, где белки собирает специальная «машинка» –рибосома. Она связана с РНК. 

Говоря по-простому, дело обстоит так. Белок расплетает ДНК, копирует информацию на РНК (зеркальным образом), а РНК доставляет информацию рибосоме. 

В процессе этой доставки («процессинга») РНК проходит через целую последовательность преобразований, в частности, из нее вырезается информация, которая рибосоме не нужна. 

Рибосома двигается по РНК и строит комплементарную цепочку. При этом она еще раз зеркально отражает информацию, возвращая ей изначальную ДНК-последовательность. И уже по комплементарной цепочке, расшифровывая генетический код, рибосома строит из подходящих аминокислот новые белки.

Зачем нужны белки?

Для того, чтобы клетка жила. 

Некоторые белки поддерживают метаболизм клетки. Другие – вновь расплетают ДНК, строят РНК и доставляют информацию рибосоме. Третьи – организуют и реализуют деление клетки. Всю необходимую работу внутри клетки делают именно белки.

Если опять применить компьютерную метафору (надеюсь, ученые нас не побьют за огрубление), то ядро клетки с ДНК внутри, – это такой харддиск, где хранятся и данные, и программы. 

Белки – это как раз программы, которые автоматически загружаются с харддиска и обрабатывают полученные данные.

Хорошо, а гены и ДНК – это не одно и то же?

Гены – часть цепочки ДНК. Это специальным образом оформленные – с концом и началом – отрезки цепочки, в которых закодированы белки и РНК. Внутри каждого гена находится особая последовательность нуклеотидов (например, ген CCR5 состоит 339 нуклеотидов). 

Все гены, кодирующие белки, составляют около 2% ДНК. Еще 1% генов отвечают за кодирование РНК. А около 80% генов внутри ДНК выполняют вспомогательные функции, в частности, упаковки ДНК в ядре. Функции почти 20% ДНК в настоящее время неясны.

Внутри гена есть генетический код, правильно?

Да. Чтобы нормально синтезировать нужный белок и запустить его работу, информацию из ДНК надо доставить рибосоме, которая непосредственно занимается сборкой. Рибосома собирает белки из 20 аминокислот, а в ДНК только четыре нуклеотида.

Четырьмя нуклеотидами невозможно закодировать все 20 аминокислот – не хватает вариантов. Как же быть? 

Спасает в этой ситуации как раз тот самый генетический код.

Точнее, процесс кодирования с помощью нуклеотидов, выстроенных в определенную последовательность. Аминокислота кодируется последовательностью из трех нуклеотидов в гене.

Это позволяет «запрограммировать» не только 20, а 64 аминокислоты (в природе столько не нужно, так ученые уже пытаются понять, что еще могут делать аминокислоты)!

Так как можно «запрограммировать» аминокислоту?

Рибосома сдвигает по РНК считывающую рамку. Когда она считывает старт-кодон (это фиксированный набор из трех аминокислот, который дает команду: «Начало»), начинается считывание информации, необходимой для синтеза белка.

Рамка сдвигается – всегда на три нуклеотида – и рибосома поэтапно создает нужную аминокислоту. Когда рамка считывает стоп-кодон, синтез завершается.

 

Если при всей этой довольно сложной (и потому не самой надежной) процедуре будет потерян хотя бы один нуклеотид, рамка сдвинется неправильно и все последующие аминокислоты будут считаны неверно.

[attention type=yellow]

Белок в таких условиях либо не удастся построить, либо он так изменится, что перестанет выполнять свои функции.

[/attention]

Описанная выше работа генетического кода – одно из древнейших изобретений эволюции, он работает практически одинаково как у человека, так и у бактерии.

Чем ген отличается от генома?

Геном – это весь наследственный материал организма, который содержит 3,1 млрд пар нуклеотидов.

Как редактируют ДНК?

Об этом мы совсем скоро напишем отдельный гайд. Все-таки процесс не самый простой, а вы, наверное, уже устали читать. Попробуем объяснить основную идею редактирования ДНК.

Раз уж мы знаем, где на «харддиске» человеческой клетки хранится кодирующая белки и РНК информация, давайте мы ее немного поправим! Это позволит улучшить всю работу клеток и всего организма. Но на этом пути очень много опасностей. О каких-то мы уже знаем, другие невозможно вычислить. По крайней мере, пока.

Источник: https://zen.yandex.ru/media/labamedia/kak-rabotaet-dnk-populiarno-obiasniaem-azy-genetiki-5c81457b88216a00b34d61d7

Интересные факты о ДНК человека

Каковы размеры днк ширина и длина

Дезоксирибонуклеиновая кислота, известная как ДНК, – это не что иное, как молекула, кодирующая генетическую информацию, которая управляет развитием и функционированием живого организма. Проще говоря, ДНК хранит информацию о генетической структуре организма.

Этот генетический состав передается из поколения в поколение. Ученые еще не пришли к окончательному пониманию происхождения ДНК и того, как работает наша генетика, но сделали массу удивительных заключений.

Вот только некоторые интересные факты о ДНК, которыми мы хотим поделиться. 

На сколько процентов ДНК разных людей похожи между собой

Хотя мы все имеем почти полностью одинаковые гены, инструкции, содержащиеся в этих генах, идентичны не полностью. Несмотря на практически полную генетическую схожесть, каждый человек уникален. Люди имеют разные оттенки волос, черты лица, рост, телосложение и т. п.

Эти различия между людьми появляются из-за очень небольших различий в их последовательностях ДНК.  ДНК также содержит много так называемых «генов домашнего хозяйства», которые контролируют важнейшие метаболические процессы практически во всех клетках и тканях на относительно постоянном уровне.

Некоторые различия, или мутации, в этих генах могут вызывать заболевания. Хотя ДНК любых двух людей на Земле, на самом деле, идентична на 99,9%, даже небольшая разница может иметь большой эффект, если эта мутация произошли в критически важном гене.

Но это генетическое сходство порождает вопрос: почему мы можем легко отличить одного человека от другого? Наш мозг настроен так, чтобы замечать и усиливать различия и распределять объединяющие свойства, которые есть у всех нас, – две руки, один нос, большая голова и т. п.

Для инопланетянина мы, наверное, все выглядели бы одинаково, точно так же, как мы не можем различить двух мышей одинакового окраса.

Какую длину имеют ДНК-клетки, если их растянуть?

Будучи естественной спиралью, ДНК упаковывается с помощью ферментов, поэтому занимает меньше места. Попробуйте удержать кусок веревки за один конец и скручивать другой. Когда вы добавляете скручивание, веревка уменьшается в размере.

ДНК имеет такую же скрученную структуру, которая позволяет 3 миллиардам пар оснований в каждой ячейке вписаться в пространство шириной всего 6 микрон. Какой длины молекулы ДНК человека? Гаплоидный геном человека содержит приблизительно 3 миллиарда пар оснований ДНК, упакованных в 23 хромосомы.

Конечно, большинство клеток в организме (за исключением яйцеклеток и смерматозоидов) являются диплоидными, с 23 парами хромосом. Это составляет в общей сложности 6 миллиардов пар оснований ДНК на клетку.

[attention type=red]

Поскольку каждая пара оснований имеет длину около 0,34 нанометра (нанометр составляет одну миллиардную часть метра), следовательно, каждая диплоидная клетка содержит около 2 метров ДНК [(0,34×10-9) × (6×109)]. Более того, по оценкам ученых, человеческое тело содержит около 50 триллионов клеток, что составляет до 100 триллионов метров ДНК на человека.

[/attention]

  Для сравнения: Солнце находится в 150 миллиардах метров от Земли. Это означает, что у каждого из нас достаточно ДНК, чтобы, размотав ее, дотянуться к Солнцу и обратно более 300 раз или обмотать ее вокруг экватора Земли 2,5 миллиона раз. Если полностью растянуть ДНК одной клетки, цепочка составит около 2 метров в длину, а вся ДНК во всех наших клетках вместе будет примерно в два раза больше диаметра Солнечной системы.

Объём молекул ДНК

Чтобы представить последовательность молекулы ДНК на компьютере, мы должны быть в состоянии представить все 4 варианта пары оснований в двоичном формате (0 и 1). Эти 0 и 1 обычно группируются вместе, чтобы сформировать одну единицу информации, байт, который содержит 8 битов.

Мы можем обозначить каждую базовую пару, используя минимум 2 бита, что дает 4 разные комбинации (00, 01, 10 и 11). Каждая 2-битная комбинация будет представлять одну пару оснований ДНК. Один байт (или 8 бит) может представлять 4 пары оснований ДНК.

Чтобы представить весь диплоидный геном человека в байтах, мы можем выполнить следующие вычисления: 6×109 пар оснований/диплоидный геном x 1 байт/4 пары оснований = 1,5×109 байт, или 1,5 гигабайта, что примерно равно двум компакт-дискам.  Может возникнуть интересный вопрос.

Например, сколько мегабайт генетических данных хранится в организме человека? Для простоты давайте проигнорируем микробиом (все клетки, не принадлежащие человеку, которые живут в нашем организме), и сосредоточимся только на клетках, которые составляют наше тело. Оценка количества клеток в организме человека колеблется от 10 до 100 триллионов.

Давайте возьмем 100 триллионов клеток в качестве общепринятой оценки.

Итак, учитывая, что каждая диплоидная клетка содержит 1,5 ГБ данных (это очень приблизительно, поскольку мы учитываем только диплоидные клетки и игнорируем гаплоидные сперматозоиды и яйцеклетки в нашем организме), приблизительное количество данных, хранящихся в организме человека: 1,5 ГБ х 100 триллионов ячеек = 150 триллионов Гбайт или 150 × 10 12 х 10 9 байт = 150 зетабайт (10 21).  А каким объемом генетических данных обмениваются люди во время зачатия человека? Каждый сперматозоид у человека мужского пола является гетерогаметным и гаплоидным. Это означает, что он содержит только одну из двух половых хромосом (X или Y) и только один набор из 22 аутосомных хромосом. Таким образом, каждый сперматозоид содержит около 3 миллиардов оснований генетической информации, что составляет 750 Мбайт цифровой информации. Средний эякулят человека содержит около 180 миллионов сперматозоидов. Итак, это 180 х 10 6 гаплоидных клеток х 750 Мбайт / гаплоидная клетка = 135 х 10 9 Мбайт = 135000 терабайт! 

Сколько раз в день повреждается структура молекул?

Поскольку ДНК является хранилищем генетической информации в каждой живой клетке, ее целостность и стабильность крайне важны для жизни.

ДНК, однако, не инертна, это химическое вещество, подвергающееся нападению со стороны окружающей среды, и любое повреждение, если оно не будет устранено, приведет к мутации и, возможно, заболеванию.

[attention type=green]

  Наиболее известным примером связи между повреждением ДНК, вызванным окружающей средой, и заболеванием является рак кожи, который может быть вызван чрезмерным воздействием ультрафиолетового излучения в виде солнечного света (и, в меньшей степени, соляриев).

[/attention]

Другим примером является повреждение, вызванное табачным дымом, которое может привести к мутациям в клетках легких и последующему раку легких.  Помимо факторов окружающей среды, ДНК также подвержена окислительному повреждению от побочных продуктов метаболизма, таких как свободные радикалы. Фактически было подсчитано, что отдельная клетка может страдать до одного миллиона изменений ДНК в день.

Самые малоизвестные факты о ДНК

Все перечисленное выше далеко не единственные удивительные вещи, которые связаны с ДНК. Например, знали ли вы, что некоторые древние вирусы уже давно встроены в наш геном? Многие из них сыграли важную роль в эволюции.

Ученые считают, что так в результате инфицирования так называемыми ретровирусами мы приобрели мозг большего размера, социальные навыки и другие уникальные возможности человека.

Вот другие малоизвестные факты о структуре ДНК:

  1. Сравнивая возраст образцов ископаемых ДНК и степень ее деградации, исследователи подсчитали, что период полураспада ДНК составляет 521 год. Это означает, что через 521 год половина связей между нуклеотидами в основной цепи образца разорвется; еще через 521 год исчезнет половина оставшихся и так далее. Ученые считают, что даже в кости при идеальной температуре хранения -5 ºC каждая связь будет разрушена максимум через 6,8 миллиона лет. ДНК перестала бы быть читаемой намного раньше – возможно, через 1,5 миллиона лет, когда оставшиеся цепочки были бы слишком короткими, чтобы дать значимую информацию. 
  2. Двое мужчин могут быть биологическими отцами общего ребенка. Это стало возможным благодаря открытию роли генетических регуляторов, которые влияют на то, дифференцируется ли незрелая половая клетка в мужскую или женскую клетку и как этим процессом можно манипулировать. В будущем может быть возможным использование стволовых клеток мужчины для производства яйцеклетки, что позволило бы младенцу иметь двух биологических отцов. Поскольку у мужчины есть вся соответствующая материнская информация на одной из его копий Х-хромосомы, полученная яйцеклетка теоретически будет полностью функциональной.
  3. «Диск бессмертия». Когда Ричард Гэрриот отправился на МКС в 2008 году, он решил взять с собой так называемый «Диск бессмертия». Это микрочип, специально предназначенный для работы в качестве футуристической капсулы времени, если на Земле произойдет катастрофа. Этот чип включает в себя список некоторых из величайших достижений человечества; а также сообщения и письма с Земли. Капсула времени также включает оцифрованные последовательности ДНК бесчисленных личностей с Земли, от профессора Стивена Хокинга, комика Стивена Колберта до самого Гэрриота.

Понравился пост? Подпишитесь на обновления сайта

Источник: https://dnk-test.com.ua/blog/nauka/interesnie-fakty-o-dnk-cheloveka

Что такое ДНК человека | Как расшифровывают результаты ДНК-анализа

Каковы размеры днк ширина и длина
ДНК, что это такое простыми словами, и как оно устроено? Физически это макромолекула, которая не только хранит в себе, какую-то наследственную информацию, но и является подробной инструкцией по развитию всего организма условно из одной универсальной клетки.

Если сравнить человека с компьютером, а всё многообразие биологической жизни сравнить с различными формами роботизированных компьютеров, ДНК в этом сравнении будет биологическим языком программирования. С той лишь разницей, что биологические виды устроены намного сложнее и совершеннее самых передовых компьютеров.

К примеру, все биологические виды обладают уникальной способностью деления и преобразования клетки. Фактически, в ходе самовоспроизводства клетки, биомасса не только материализуется сама из себя, но и физически преобразовывается под решение множества узкоспециализированных задач.

А всё многообразие живых видов, их форм, уникальных способностей исходит из деления одной универсальной клетки. Одно это уже уходит далеко за грань всех современных генетических достижений.

Фактически открытие дезоксирибонуклеиновой кислоты  произошло дважды. Первым открытие молекулы совершил Иоганн Фридрих Мишер в 1869 году.

Будучи швейцарским биологом и физиологом, он из клеток, содержащихся в гное, смог выделить большую молекулу с высоким содержанием азота и фосфора. Свое открытие он назвал нуклеин, а позже нуклеиновой кислотой, когда были открыты её кислотные свойства.

Первоначально ученые считали, что основная функция нуклеиновой кислоты в хранении фосфора. А предположения, что она может содержать в себе наследственную информацию, вызывали насмешки, поскольку структура молекулы казалась им слишком простой и однообразной для таких функций.

Так же считалось, что наличие дезоксирибонуклеиновой кислоты свойственно только животным клеткам, а в растениях содержится только РНК. Но, в 1934-1935 годах советские ученые-биологи А.Н. Белозерский и А.Р.

Кезеля – это наглядно опровергли и опубликовали результаты своих работ в советских и мировых научных журналах.

Повторное открытие ДНК уже в качестве носителя наследственной информации и не только, было совершено в 1944 году. Группа исследователей, состоящая из Освальда Эвери, Колина Маклауда и Маклина Маккарти проводили эксперименты с трансформацией бактерий и доказали, что основную роль в этом процессе играет дезоксирибонуклеиновая кислота .

Значение ДНК в медицине

Открытие ДНК в медицине, расшифровка этой кислоты – это события, которые трудно преувеличить. Большая часть современных прорывных технологий и исследований прямо или косвенно базируются на этом фундаментальном для науки открытии.

Не знай мы про гены, не было бы многих современных методов лечения и диагностики, многих технических изобретений. По сути, не было бы и генетики, как полноценной самостоятельной науки. Застопорилось бы изучение клетки и того, как она функционирует.

А без этих знаний и множество открытий в этой области были бы не возможны.

На сегодняшний день знания о генах помогают многим людям:

  •  Узнать о заболевании намного раньше наступления первых симптомов. Лечение на сверхранней стадии всегда более успешно.
  •  Найти своих близких и родных. Узнать много подробностей о своём роде.
  •  Благодаря открытию носителя наследственной информации у медицины появился шанс побороть наследственные заболевания, которые ранее казались неизлечимыми.
  •  Вполне возможно, что именно благодаря этому открытию человечество решит задачу многих тысячелетий и найдет эликсир бессмертия, или таблетку от всех болезней.

Молекула ДНК

ДНК определение, поиск его места в уже систематизированном знании не так прост. По существу к молекулам ДНК отнесли условно, для удобства. Молекула ДНК – это структура превосходящая размером обычные молекулы. И она имеет уникальную спиральную структуру.

В то время, как физики и химики считают молекулами электрически нейтральные частицы, состоящие из одного и более атомов связанных ковалентными связями.

Либо же, по результатам международного съезда химиков 1860, молекулой считается наименьшая частица вещества, обладающая всеми его химическими свойствами.

Структура ДНК

У всех на слуху, что дезоксирибонуклеиновая кислота имеет двуспиральную структуру. В интернете, в фильмах, в рекламе – всюду можно встретить её многократно увеличенное изображение. Но, что ответить, если спросят «Объясните подробнее»? Это уже более сложный вопрос. Давайте разберемся лучше, из чего эта структура состоит:

  1.     Нуклеотиды – базовые структурные элементы.
  2.     Две цепочки генов, закрученные в спираль.
  3.     Каждая цепочка состоит из нуклеотидов, которые кодируют определенный ген.
  4.     Связывают две цепочки воедино водородные связи.

В цепочках нуклеотидов присутствуют и совсем не изученные структуры, которые с первого взгляда, ни как не участвуют в физиологических процессах. Эти, довольно обширные участки называют мусорными.

Состав ДНК

Если говорить о составе ДНК более подробно, то нуклеотиды это базовый структурный элемент, кирпичики из которых состоят обе цепи спирали. Нуклеотиды подразделяются на 4 разновидности: аденин, тимин, гуанин и цитозин. И всего 4 этих нуклеотида осуществляют запись всей наследственной информации и составляют все известные гены.

Закручиваются в спираль обе цепочки генов тоже не просто так. Из всех четырёх различных нуклеотидов находиться напротив друг друга в разных цепочках они могут только двумя парами: аденин-тимин и гуанин-цитозин. В науке эти пары называются комплементарными.

Между парными нуклеотидами возникает крепкая водородная связь. При этом, связь аденином и тимином немного слабее чем между гуанином и цитозином. Но закручиваются цепочки в спираль по иным причинам:

  •  Исследования показали, что скручивание помогает сократить длину цепочки генов в 5-6 раз. А во время суперспирализации (такое тоже бывает) длина цепочки может сократиться в целых 30 раз!
  •  Помимо того, что пара цепочек генов закручена в спираль, существует и суперспирализация. За это явление отвечают гистоновые белки, которые имеют форму катушек для ниток. Уже закрученная двойная спираль наматывается на эти белки, как нитка. Что не оставляет сомнений в том, что спиральность, как таковая специально служит тому, что бы более компактно упаковать наследственную информацию в клетку.

Роль в клетке

Конечно одна, даже большая двойная спираль не способна вместить в себя весь объем информации необходимый для такого сложного проекта, как человеческое тело. Возможно, поэтому эти цепочки объединены в пары, что делает их похожими на букву «Х». Хромосомы в свою очередь тоже парные, и их у человека 46 пар.

Помимо того, что хромосома содержит в себе подробную инструкцию по функционированию клетки, она же путем активации актуальных моменту генов, провоцирует клетку вырабатывать определённые белки с самыми различными свойствами. Например, в борьбе с опухолями активно участвует ген старости, который старит её недоброкачественнее клетки и не даёт им бесконечно делиться.

Что такое нуклеотиды

Нуклеотиды это четыре элемента, которые являются основой биоязыка программирования цепи ДНК, так же, как ноль и единица являются основой ассемблера (первого из языков программирования). Уникальная последовательность нуклеотидов в одной из двух цепочек ДНК является геном. Если хотя бы немного изменить эту последовательность, то ген уже будет повреждён или разрушен.

Синтез белка

Синтез белков это ключевое таинство всей физиологии человека. Именно белки запускают и контролируют все процессы в организме на клеточном уровне. Если полностью изучить, какие гены и группы генов в каких случаях запускают синтез белков, и сами эти белки, то наука научиться полностью настраивать и перенастраивать весь человеческих организм.

На сегодняшний день нам известно, что реагируя на различные раздражители, в двойной спирали дезоксирибонуклеиновой кислоты активируются гены или участки с генами.

Информация с этих участков копируется на РНК (рибонуклеиновая кислота) и уже РНК переносить информацию из ядра клетки, в котором находятся хромосомы, в саму клетку. РНК выступает своего рода глашатаем, который читает указ всем работникам.

[attention type=yellow]

Так РНК заставляет клетку вести себя тем либо иным образом и вырабатывать различные белки.

[/attention]

Если ДНК это кабинет министров, которые всем управляют и принимают все решения, то РНК это пресс-атташе. Он извещает всех о новых распоряжениях и указах, и раздаёт инструкции на местах.

РНК это рибонуклеиновая кислота, которая может копировать формы различных участков дезоксирибонуклеиновой кислоты и транспортировать их из ядра клетки в её внутриклеточное пространство.

Расшифровка ДНК

ДНК расшифровка стала возможна только благодаря открытию полимеразной цепной реакции и происходит следующим образом:

 Проба, содержащая образцы дезоксирибонуклеиновой кислоты, быстро нагревается. Это необходимо, что бы двойная спираль раскрутилась и распалась на две самостоятельные нити.

  •  К интересующему исследователей участку цепи генов прилепляется полимераза. Эта процедура происходит при немного боде низких температурах.
  •  Полимераза активирует деление пойманного участка – так происходит синтез необходимых для изучения участков генов.
  •  Участки пропитываются специальной краской, которая светиться при воздействии направленного пучка лазера. Так получают картину гена, которую можно изучать и расшифровывать.

Источник: https://mygenetics.ru/blog/genetika/chto-takoe-dnk-cheloveka/

ДНК. Механизмы хранения и обработки информации. Часть I

Каковы размеры днк ширина и длина

Много людей использует термин ДНК. Но статей, нормально описывающих, как она работает почти нет (понятных не биологам). Я уже описывал в общих чертах устройство клетки и самые основы ее энергетических процессов. Теперь перейдем к ДНК. ДНК хранит информацию. Это знают все. Но вот как она это делает? Начнем с того, где она в клетке хранится.

Примерно 98% хранится в ядре. Остальное в митохондриях и хлоропластах (в этих ребятах протекает фотосинтез). ДНК — это огромный полимер, состоящий из мономерных звеньев. Выглядит примерно так.

Что мы тут видим? Во-первых ДНК — двухцепочечная молекула. Почему это так важно — чуть позже. Далее мы видим синие пятиугольники.

Это молекулы дезоксирибозы (такой сахар, чуть меньше глюкозы. От рибозы отличается отсутствием одной OH группы, что придает стабильности молекуле ДНК, в отличие от РНК, в которой используется рибоза. Дальше, для простоты опущу приставку дезокси и буду просто говорить рибоза, да простят нас щепетильные товарищи).

Маленькие кружкИ — остатки фосфорной кислоты. Ну и собственно есть азотистые основания. Всего их 5, но в ДНК в основном встречаются 4. Это Аденин, Гуанин, Тимин и Цитозин. То есть, есть рибоза с которой связано азотистое основание. Вместе они образуют так называемые нуклеозиды, которые связываются друг с другом с помощью остатков фосфорной кислоты.

Таким образом мы получаем длинную цепь, состоящую из мономеров. Теперь посмотрите на увеличенную левую цепь. Видите C и G соединены тремя пунктирными линиями, а T и A двумя. Что это значит? Да, ДНК состоит из двух цепей, но что удерживает их вместе? Есть такая штука, как водородная связь. Выглядит примерно так.

На атомы кислорода (O) и азота (N) формируется частичный отрицательный заряд, а на водороде (H) — положительный. Это приводит к формированию слабых связей.

Связи действительно очень слабые. Их энергия может быть в 200 раз ниже энергии ковалентных связей (образуются за счет перекрытия пары электронных облаков, например связь в молекуле CO2). Однако таких связей много. В каждой нашей клетке ДНК цепи связаны почти 16 миллиардами слабых связей, не мало, согласны? Но вернемся к числу связей между основаниями. Цитозин и Гуанин связаны тремя связями, а Аденин и Тимин — двумя. Это приводит к тому, что Г и Ц связанны куда прочнее, чем А и Т. Некоторым организмам нужна особая стабильность связей ДНК, например живущим при высоких температурах. При нагревании ДНК содержащая больше ГЦ пар более стабильна. Так что хочешь жить в гейзере — имей много ГЦ пар. Хотя последние исследования говорят, что явной связи между GC составом (% ГЦ пар от всех пар) и температурой обитания нет. Стоит сказать, что варьирует он сильно. Так у Candidatus Carsonella ruddii PV (внутриклеточный эндосимбионт) он примерно 16%, у нас с вами почти 41%, а у Anaeromyxobacter K (бактерия вполне себе средних размеров) достигает 75%. Тут вы можете видеть связь GC состава с размером генома бактерий. Mb — миллион пар нуклеотидов. Показатель довольно вариативный. Его, кстати, часто юзают как фичу при обучении различного рода классификаторов. Сам недавно писал классификатор для распознания патогенов на основе сырых данных секвенирования и оказалось, что GC состав даже по одному риду вполне себе можно использовать. Пока не забыл. Почему важно, что ДНК двухцепочечная? На основе одной цепи можно восстановить другую. Если в одной цепи поврежден кусок напротив последовательности Аденин-Аденин-Цитозин, то мы точно знаем, что до повреждения там был Тимин-Тимин-Гуанин. Таким образом наличие второй цепи позволяет надежней хранить информацию. Круто! Теперь вернемся к самой молекуле ДНК. Это цепочка из 4х типов звеньев. Однако насколько длинная? У Candidatus Carsonella ruddii PV уже упомянутого выше всего 160 000 нуклеотидов. У нас с вами 3.2 миллиарда (в гаплоидной клетке, то есть с одним набором хромосом. У большинства наших клеток их два). Кажется много, да? На самом деле нет. У одноклеточной амебы (Amoeba dubia) он примерно 670 миллиардов пар нуклеотидов. Кажется что это бесконечно длинная цепочка, поэтому давайте переведем размер в любимые нам метры. Если все наши хромосомы (их 46, не забываем; 23 по две копии на каждую) развернуть и вытянуть в одну линию, получится примерно 2х метровая цепочка. ДНК одной амебы хватит, чтоб опоясать футбольный стадион. Но к чему я веду? Ядро, в котором ДНК хранится не очень большое. У нас оно в среднем диаметром в 6 мкм. Не очень то много, если хочешь свернуть 2х метровую нить, пусть и очень тонкую. Причем нужно не просто запихать нить в ядро. Нужно свернуть таким образом, чтобы в любой момент можно было обеспечить доступ к любому ее участку. Задача сложная. И с ней успешно справляются специализированные белки. Они создают ряд спиралей и петель, которые обеспечивают все более и более высокие уровни упаковки и не до допускают спутывания ДНК в гордиев узел. Давайте поговорим о том, как она упаковывается. Сразу скажу, упаковывается она очень по разному. Но если откинуть экзотику, то остается два способа. Первый характерен для бактерий, второй для эукариот (или иначе ядерных).

Упаковка ДНК у бактерий

Начнем с братьев наших меньших. Бактерии сами по себе обладают не очень большим геномом, в среднем от 1 до 5 миллионов пар нуклеотидов. Наиболее характерное их отличия от нас в том, что у них нет ядра и ДНК плавает в клетке. Не совсем плавает, оно частично прикреплено к клеточной мембране и тоже свернуто, но не так сильно как у нас. Второе.

Бактериальная ДНК чаще всего кольцевая. Так ее проще копировать (нет концов, которые могут потеряться при копировании и не нужно придумывать механизмы сохранения концов). Обычно такое кольцо одно, но у некоторых бактерий их может быть 2 или 3. Есть еще кольца поменьше (от пары тысяч до пары сотен тысяч остатков).Имя им плазмиды, и это вообще отдельная история.

Вернемся к упаковке ДНК. ДНК упаковывают белки-гистоны (есть еще гистоноподобные белки). ДНК это дезоксирибонуклеиновая кислота. Кислота. Это значит что она отрицательно заряжена (за счет остатков фосфорной кислоты). Поэтому белки, связывающие ее положительно заряжены. Таким образом они могут связываются с ДНК.

ДНК бактерий вместе с белками ее упаковывающими формируют нуклеоид, при этом на долю ДНК приходится 80% от его массы. Выглядит это примерно так. То есть кольцевая ДНК делится на домены по 40 тысяч пар нуклеотидов. Затем происходит скручивание. Внутри доменов тоже происходит скручивания, но его степень в разных доменах отличается.

В среднем степень упаковки бактериальной ДНК варьирует от сотни до тысячи раз.

Есть еще прикольное видео.

Упаковка ДНК у эукариот

Тут все куда интересней. Наше ДНК хорошо упакована и спрятана внутри ядра. И она куда эффективней упакована, нежели у бактерий. Во время митоза (деление клетки) размер 22й хромосомы составляет 2 мкм. Если ее распутать и вытянуть, она будет уже 1,5 см.

Что соответствует степени упаковки в 10 000 раз. Это около максимальная степень упаковки нашей ДНК. Во время деления нужно максимально упаковать ДНК, что бы эффективно разделить ее между дочерними клетками. В обыденной жизни степень компактизации составляет примерно 500 раз.

Со слишком упакованной ДНК сложно считывать информацию.

Есть несколько уровней упаковки ДНК эукариот

Первый — нуклеосомный уровень. 8 белков-гистонов формируют частицу на которую наматывается ДНК. Затем еще один белок ее фиксирует. Выглядит примерно так.
Получаются своего рода бусы. Плотность упаковки благодаря этому возрастает в 7-10 раз. Далее нуклеосомы упаковываются в фибрилы. Немного похоже на солениод.

Тут суммарная степень упаковки может достигать 60 раз. Следующий этап компактизации ДНК связан с образованием петлеобразных структур, которые называются хромомерами. Фибрила разбита на участки по 10 — 80 тысяч пар азотистых оснований. В местах разбивки находятся глобулы негистоновых белков.

ДНК — связывающие белки узнают глобулы негистоновых белков и сближают их. Образуется устье петли. Средняя длина петли включает примерно 50 тысяч оснований. Эту структуру называют интерфазной хромонемой. И именно в ней наше ДНК находится большую часть времени. Уровень упаковки здесь достигает 500-1500 раз.

При необходимости клетка может еще больше компактизировать генетический материал. Идет образование более крупных петель из хромомерной фибриллы. Эти петли в свою очередь образуют новые петли (петли в петли… и это не вязание). Которые в конечном счете формируют хромосому. В целом процесс упаковки можно описать примерно так.

В итоге из нитей ДНК мы получаем, при делении, суперскрученные структуры, которые можно увидеть под микроскопом. Их мы и зовем хромосомами. Собственно вещество хромосом зовется хроматином. И степень его упаковки отличается в зависимости от участка хромосомы. Есть эухроматин и гетерохроматин.

Эухроматин это довольно расплетенная область хроматина, в ней ДНК находится на хромомерном уровне (упаковка в 500 — 1000 раз). Здесь происходит активное считывание информации. Например, если сейчас клетка активно синтезирует белок А, то область ДНК, его кодирующая будет в состоянии эухроматина, что бы ферменты, «читающие» ДНК могли до нее добраться.

Гетерохроматин же содержит ту часть ДНК, которая клетке не особо нужна сейчас. То есть ДНК максимально плотно упакована, дабы не путаться под ногами. В зависимости от потребностей клетки одни области хроматина могут частично расплетаться, в то время как другие — сплетаться.

[attention type=red]

Таким образом еще и осуществляется регуляция (очень грубое приближение), ведь к скрученной области не добраться, и значит ее не прочитать.

[/attention]Собственно пока это все. Мы обсудили как хранится носитель информации. Сделаем небольшую паузу и через пару дней поговорим о самом кодировании информации.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.

  • 19,5%Изи, усложняй смело34
  • 66,1%Изи, можно так и оставить. Больше статей!115
  • 14,4%Много непонятного, больше поясняй, больше примеров!25
  • 29,2%Круто, пиши на свой выбор45
  • 7,8%не интересно, в кач не хожу:)12
  • 47,4%Интересно все! Хватит спрашивать, пиши уже…73
  • 15,6%Если напишешь о прикладных аспектах, будет здорово!24
  • biotechnology
  • genomics
  • cells
  • dna

Хабы:

  • Научно-популярное
  • Биотехнологии
  • Здоровье

Источник: https://habr.com/ru/post/424809/

Днк (дезоксирибонуклеиновая кислота)

Каковы размеры днк ширина и длина

ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула.

 Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой.

Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).

Участок молекулы ДНК, кодирующий определенный признак, – ген.

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки,  другие — только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).

    Рисунок 1 : ДНК – строение одной цепочки нуклеотидов

При этом,  фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка,  а  органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),

    Рисунок 2: Азотистые основания- пуриновые и пиримидиновые

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен  2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН),  а  в РНКрибозой, имеющей 2 гидроксильные группы(OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец),  а  на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура  ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется  водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек,  закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК.

Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов.

Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет  8 см,  а в форме суперспирали укладывается в 5 нм.

 Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т  или (А + G)/(C + Т)=1.
  2. В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т):   А +C= G + Т или (А +C)/(G + Т)= 1
  3. Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1;  Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3).

При этом аденин образует пару только с тимином,  а  гуанин — с цитозином.

Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—Стремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′.

В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Интересные факты о ДНК

  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации. При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК. [2]
  2. Международный день ДНК отмечается 25 апреля.

    Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот», где описали двойную спираль молекулы ДНК. [3]

Список литературы: Молекулярная биотехнология: принципы и применение, Б.

Глик, Дж. Пастернак, 2002 год
Б.Глик,
Дж. Пастернак,
Источник: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год
[2] MPlast.

by – портал: “ДНК 1 клетки человека вмещает 1,5 гигабайта информации – лучший винчестер на планете” – 27 апреля 2016 года
[3] Журнал NATURE: “Molecular Structure of Nucleic Acids” – 25 апреля 1953 года
Дата в источнике: 2002 год

Источник: https://mplast.by/encyklopedia/dnk-dezoksiribonukleinovaya-kislota/

Медик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: