Клеточное дыхание уравнение

Какое химическое уравнение для клеточного дыхания – 2020 – Новости

Клеточное дыхание уравнение

Клеточное дыхание – это процесс, посредством которого организмы преобразуют биохимическую энергию питательных веществ в АТФ. Этот процесс расщепляет глюкозу на шесть молекул углекислого газа и двенадцать молекул воды.

Общее химическое уравнение для аэробного дыхания : C 6 H 12 O 6 + 6O 2 + 6H 2 O → 12H 2 O + 6CO 2 + 36 / 38ATP
и химические уравнения для анаэробного дыхания : C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO2 + 2ATP (для брожения этанола) и C 6 H 12 O 6 → 2C 3 H 6 O 3 + 2ATP (для брожения молочной кислоты ).

Клеточное дыхание – это катаболический процесс, который расщепляет большие молекулы на маленькие. Энергия, выделяемая при клеточном дыхании, используется в синтезе АТФ. Различные сахара, аминокислоты и жирные кислоты могут быть использованы в качестве субстрата для клеточного дыхания.

Ключевые области покрыты

1. Что такое клеточное дыхание
– определение, факты, виды
2. Что такое химическое уравнение для клеточного дыхания
– Аэробное дыхание, анаэробное дыхание

Ключевые слова: аэробное дыхание, анаэробное дыхание, АТФ, клеточное дыхание, глюкоза

Что такое клеточное дыхание

Клеточное дыхание представляет собой набор химических реакций, связанных с расщеплением питательных веществ на углекислый газ и воду, с образованием АТФ. АТФ является основной энергетической валютой клетки. Клеточное дыхание происходит практически во всех организмах на земле.

Питательные вещества, такие как углеводы, белки и жирные кислоты, превращаются в глюкозу и используются в клеточном дыхании. Существует два типа клеточного дыхания: аэробное и анаэробное. Конечным электронным акцептором аэробного дыхания является молекулярный кислород, который является неорганическим соединением при анаэробном дыхании.

Общий процесс клеточного дыхания показан на рисунке 1 .

Рисунок 1: Клеточное дыхание

Что такое химическое уравнение для клеточного дыхания

Химические уравнения для всех типов клеточного дыхания описаны ниже.

Аэробного дыхания

Аэробное дыхание является наиболее эффективным типом клеточного дыхания, которое происходит в присутствии кислорода. Три шага аэробного дыхания – гликолиз, цикл Кребса и цепь переноса электронов.

1. Гликолиз

Гликолиз – это первая стадия аэробного дыхания, которое происходит в цитоплазме. Две молекулы пирувата образуются из одной молекулы глюкозы во время гликолиза. Химическое уравнение для гликолиза,

Глюкоза + 2NAD + 2Pi + 2ADP → 2Пируват + 2NADH + 2ATP + 2H + + 2H 2 O + Тепло

Эти молекулы пировиноградной кислоты реагируют с коэнзимом-А с образованием ацетил-КоА.

Пируват + 2NAD + + CoA → Ацетил-КоА + NADH + CO 2 + H +

2. Цикл Кребса

Во время цикла Кребса ацетил-КоА полностью разлагается на углекислый газ.

Ацетил-КоА + 3NAD + Q + ВВП + Pi + 2H 2 O → CoA-SH + 3NADH + 3H + + QH 2 + GTP + 2CO 2

3. Электронная транспортная цепь

Коферменты, полученные в результате двух вышеупомянутых процессов, восстанавливаются путем окислительного фосфорилирования Высвобожденная энергия сохраняется в АТФ.

Общее химическое уравнение для аэробного дыхания показано ниже.

C 6 H 12 O 6 + 6O 2 + 6H 2 O → 12H 2 O + 6CO 2 + 36 / 38ATP

Анаэробное дыхание

Анаэробное дыхание представляет собой тип клеточного дыхания, которое происходит в отсутствие кислорода. Основным видом анаэробного дыхания является брожение.

Можно выделить два типа брожения: брожение в этаноле и брожение молочной кислоты. Первыми шагами обоих методов ферментации являются гликолиз.

Сбалансированные химические уравнения как для ферментации этанола, так и для ферментации молочной кислоты приведены ниже.

Вывод

Во время клеточного дыхания одна молекула глюкозы расщепляется на шесть молекул углекислого газа и двенадцать молекул воды. Высвобожденная энергия используется при производстве АТФ.

Ссылка:

1. «Шаги клеточного дыхания». Ханская академия, доступно здесь.

Изображение предоставлено:

1. «CellRespiration» от RegisFrey – собственная работа (CC BY-SA 3.0) через Commons Wikimedia

Источник: https://ru.betweenmates.com/what-is-chemical-equation

Клеточное дыхание

Клеточное дыхание уравнение

Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды.

Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма.

О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание.

Использование различных начальных субстратов

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Основная статья: Гликолиз

Гликолиз — путь ферментативного расщепления глюкозы — является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением. Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода.

Первый его этап протекает с выделением энергии 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата.

На втором этапе происходит НАД-зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием, то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ.

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД+ + 4АДФ + 2АТФ + 2Фн = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H2O + 4Н+.

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД+ + 2АДФ + 2Фн = 2НАД∙Н + 2ПВК + 2АТФ + 2H2O + 2Н+.

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид, который вместе с Кофермент А образует Ацетил-КоА. Реакция сопровождается восстановлением НАД до НАД∙Н.

У эукариот процесс протекает в матриксе митохондрий.

β-окисление жирных кислот

Основная статья: β-окисление

Деградация жирных кислот (у некоторых организмов также алканов) происходит у эукариот в матриксе митохондрий. Суть этого процесса заключается в следующем. На первой стадии к жирной кислоте присоединяется кофермент А с образованием ацил-KoA.

Он дегидрируется с последовательным переносом восстановительных эквивалентов на убихинон дыхательной ЭТЦ. На второй стадии происходит гидратирование по двойной связи С=С, после чего на третьей стадии происходит окисление полученной гидроксильной группы.

В ходе этой реакции восстанавливается НАД.

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Основная статья: Цикл трикарбоновых кислот

Ацетил-КоА под действием цитратсинтазы передаёт ацетильную группу оксалоацетату с образованием лимонной кислоты, которая поcтупает в цикл трикарбоновых кислот (цикл Кребса).

В ходе одного оборота цикла лимонная кислота несколько раз дегидрируется и дважды декарбоксилируется с регенерацией оксалоацетата и образованием одной молекулы ГТФ (способом субстратного фосфорилирования), трёх НАДН и ФАДН2.

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД+ + ФАД + ГДФ + Фн + 2H2O + КоА-SH = 2КоА-SH + 3НАДH + 3H+ + ФАДН2 + ГТФ + 2CO2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Окислительное фосфорилирование

Основные статьи: Окислительное фосфорилирование, Дыхательная электронтранспортная цепь, АТФ-синтаза

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН2, восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т. д..

Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот — в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей.

Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса три молекулы АТФ, ФАДН2 — две.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород.

Анаэробное дыхание

Основная статья: Анаэробное дыхание

В случае если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо, нитрат- или сульфат-анион) дыхание называется анаэробным.

Анаэробное дыхание осуществляется только бактериями, которые таким образом играют важную роль в биогеохимическом цикле серы, азота и железа.

Денитрификация — один из типов анаэробного дыхания — является одним из источников парниковых газов, железобактерии принимают участие в образовании железомарганцевых конкреций.

Общее уравнение дыхания, баланс АТФ

СтадияВыход коферментаВыход АТФ (ГТФ)Способ получения АТФ
Первая фаза гликолиза2Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза4Субстратное фосфорилирование
2 НАДН4Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии.
Декарбоксилирование пирувата2 НАДН6Окислительное фосфорилирование
Цикл Кребса2Субстратное фосфорилирование
6 НАДН18Окислительное фосфорилирование
2 ФАДН24Окислительное фосфорилирование
Общий выход38 АТФПри полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

Клеточное дыхание и фотосинтез. Аэробное клеточное дыхание

Клеточное дыхание уравнение

Фотосинтез и дыхание – два процесса, лежащие в основе жизни. Они оба происходят в клетке. Первый – в растительных и некоторых бактериальных, второй – и в животных, и в растительных, и в грибных, и в бактериальных.

Можно сказать, что клеточное дыхание и фотосинтез – процессы, противоположные друг другу. Отчасти это правильно, так как при первом поглощается кислород и выделяется углекислый газ, а при втором – наоборот.

Однако эти два процесса некорректно даже сравнивать, поскольку они происходят в разных органоидах с использованием разных веществ.

Цели, для которых они нужны, тоже различны: фотосинтез необходим для получения питательных веществ, а клеточное дыхание – для выработки энергии.

Фотосинтез: где и как это происходит?

Это химическая реакция, направленная на получение органических веществ из неорганических. Обязательным условием протекания фотосинтеза является присутствие солнечного света, так как его энергия выступает в роли катализатора.

Фотосинтез, характерный для растений, можно выразить следующим уравнением:

  • 6СО2 + 6Н2О = С6Н12О6 + 6О2.

То есть из шести молекул диоксида карбона и стольких же молекул воды в присутствии солнечного света растение может получить одну молекулу глюкозы и шесть кислорода.

Это самый простой пример фотосинтеза. Кроме глюкозы в растениях могут синтезироваться и другие, более сложные углеводы, а также органические вещества из других классов.

Вот пример выработки аминокислоты из неорганических соединений:

  • 6СО2 + 4Н2О + 2SO42- + 2NO3- + 6Н+ = 2C3H7O2NS + 13О2.

Как видим, из шести молекул диоксида углерода, четырех молекул воды, двух сульфат-ионов, двух нитрат-ионов и шести ионов водорода с использованием солнечной энергии можно получить две молекулы цистеина и тринадцать – кислорода.

Процесс фотосинтеза происходит в специальных органоидах – хлоропластах. В них содержится пигмент хлорофилл, который выступает в роли катализатора для химических реакций. Такие органоиды есть только в растительных клетках.

Строение хлоропласта

Это органоид, который обладает формой вытянутого шара. Размер хлоропласта обычно составляет 4-6 мкм, однако в клетках некоторых водорослей можно обнаружить гигантские пластиды – хроматофоры, размер которых достигает 50 мкм.

Этот органоид относится к двухмембранным. Он окружен внешней и внутренней оболочками. Они отделены друг от друга межмембранным пространством.

Внутренняя среда хлоропласта называется “строма”. В ней находятся тилакоиды и ламеллы.

[attention type=yellow]

Тилакоиды – это плоские дискообразные мешочки из мембран, в которых находится хлорофилл. Именно здесь и происходит фотосинтез. Собираясь в стопки, тилакоиды образуют граны. Количество тилакоидов в гране может варьироваться от 3 до 50.

[/attention]

Ламеллы – это структуры, образованные мембранами. Они представляют собой сеть разветвленных каналов, основная функция которых – обеспечить связь между гранами.

В хлоропластах также содержатся свои рибосомы, необходимые для синтеза белков, и собственные ДНК и РНК. Кроме того, здесь могут находиться включения, состоящие из запасных питательных веществ, в основном крахмала.

Существует несколько видов данного процесса. Бывает анаэробное и аэробное клеточное дыхание. Первое характерно для бактерий. Анаэробное дыхание бывает нескольких типов: нитратное, сульфатное, серное, железное, карбонатное, фумаратное. Такие процессы позволяют бактериям получить энергию без использования кислорода.

Аэробное клеточное дыхание характерно для всех остальных организмов, в том числе животных и растений. Оно происходит при участии кислорода.

У представителей фауны клеточное дыхание происходит в специальных органоидах. Они называются митохондриями. У растений также клеточное дыхание происходит в митохондриях.

Этапы

Клеточное дыхание проходит в три стадии:

  1. Подготовительный этап.
  2. Гликолиз (анаэробный процесс, не требует кислорода).
  3. Окисление (аэробный этап).

Подготовительный этап

Первый этап заключается в том, что сложные вещества в пищеварительной системе расщепляются на более простые. Таким образом, из белков получаются аминокислоты, из липидов – жирные кислоты и глицерин, из сложных углеводов – глюкоза. Эти соединения транспортируются в клетку, а затем – непосредственно в митохондрии.

Окисление

На данном этапе образовавшаяся во время гликолиза пировиноградная кислота под действием ферментов реагирует с кислородом, в результате чего образуется углекислый газ и атомы водорода. Эти атомы затем транспортируются на кристы, где окисляются, образуя воду и 36 молекул АТФ.

Итак, в процессе клеточного дыхания в общей сложности образуется 38 молекул АТФ: 2 на втором этапе и 36 – на третьем. Аденозинтрифосфорная кислота и есть основной источник энергии, которым митохондрии снабжают клетку.

Структура митохондрий

Органоиды, в которых происходит дыхание, есть и в животных, и в растительных, и в грибных клетках. Они обладают шаровидной формой и размером около 1 микрона.

Митохондрии, как и хлоропласты, имеют две мембраны, разделенные межмембранным пространством. То, что находится внутри оболочек этого органоида, называется матриксом. В нем находятся рибосомы, митохондриальная ДНК (мтДНК) и мтРНК. В матриксе проходит гликолиз и первая стадия окисления.

Из внутренней мембраны формируются складки, похожие на гребни. Они называются кристами. Здесь проходит вторая стадия третьего этапа клеточного дыхания. Во время нее образуется больше всего молекул АТФ.

Происхождение двухмембранных органоидов

Учеными доказано, что структуры, которые обеспечивают фотосинтез и дыхание, появились в клетке путем симбиогенеза. То есть когда-то это были отдельные организмы. Этим объясняется то, что и в митохондриях, и в хлоропластах есть свои рибосомы, ДНК и РНК.

Источник: https://FB.ru/article/217429/kletochnoe-dyihanie-i-fotosintez-aerobnoe-kletochnoe-dyihanie

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим.

При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона — восстановление. Окисляемое вещество — это донор, а восстанавливаемое — акцептор водорода и электронов.

Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

[attention type=red]

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах.

[/attention]

Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции.

Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул АТФ — универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ.

Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки.

В то же время она служит для поддержания постоянной температуры тела.

Различные этапы клеточного дыхания у аэробных эукариот происходят

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C6H12O6 + 6H2O → 6CO2 + 12H2 + 4АТФ

Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ

[attention type=green]

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

[/attention]
Медик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: