Куд физиология это

Что изучает физиология человека. Определение – что такое физиология

Куд физиология это

Все ли знают, что изучает физиология, и какие задачи выполняет? Физиология – эта наука занимается исследованиями в области жизнедеятельности человеческого организма.

Сюда входят биологические процессы, взаимодействие отдельных органов, систем, клеток, тканей, механизмы регулирования тех или иных процессов.

Определение достаточно емкое, поэтому потребуется с ним разобраться подробнее.

Чтобы ответить на вопрос, что такое физиология, следует разобраться, чем конкретно она занимается. Эта наука изучает жизнедеятельность живого организма, а также отдельных его частей и систем.

Она делится на две части:

  • Общая (занимается изучением закономерностей деятельности возбудимых тканей, законами их раздражения).
  • Частная (изучает проявление жизнедеятельности отдельных органов, их сообщение и коммуникацию с другими, общее взаимодействие всех систем).

Эта наука считается основой для проведения исследования и проведение разработок в современных методиках лечения, так как позволяет понять особенности строения органов человеческого тела, возможности его адаптации к различным условиям и воздействиям, стрессам или развивающимся патологиям. Благодаря последним разработкам и продвижениям в этой дисциплине, появляются открытия в области здравоохранении и различных методиках терапии.

Что входит в область изучения?

Как уже было сказано, наука физиология, изучает особенности функционирования органов человеческого тела. Все они взаимосвязаны между собой, и от гармонии функционирования зависит здоровье.

Вот основные системы, которые пристально изучаются дисциплиной:

  • Сердечно-сосудистые органы (несут ответственность за перекачку крови через венозную систему).
  • Желудочно-кишечный тракт (ответственный за переработку еды, и преобразованию ее в полезные компоненты).
  • Репродуктивная система (от ее нормальной работы зависит возможность появления потомства).
  • Эндокринная система (ответственная за выработку особей секреции для нормального развития и жизнедеятельности).
  • Кожный покров (который отвечает за защиту внутренних органов от бактерий и вредоносных микроорганизмов).
  • Опорно-двигательный аппарат (без нее человек не мог бы нормально передвигаться).
  • Система дыхания (отвечает за наполнение тканей и крови кислородом).
  • Выделительная система (отвечает за выведение из организма токсинов, шлаков и прочих отходов).
  • Нервная система (обеспечивает чувствительность и передачи импульсов и сигналов по всему телу).
  • Защитная система, иммунитет (предотвращает проникновение в организм болезнетворных микробов и микроорганизмов).

Но это далеко не все что изучает физиология человека, так как кроме области медицины наука затрагивает и смежные дисциплины. Изучать влияние тех или иных процессов, на функционирование систем, выявлять реакцию их на различные изменения.

Физиология представляет собой теоретическую основу медицины, своеобразный «фундамент» для всей системы здравоохранения. Однако это далеко не все области, с которыми пересекается эта наука. Используется физиология в биологии, биохимии, анатомии, гистологии и т.д. Даже без физики не получиться найти нормальное объяснение процессам, происходящим во многих тканях человека.

[attention type=yellow]

Химия привлекается в тот момент, когда требуется выразить на бумаге прохождение метаболизма, расщепления пищи в желудке, попадание кислорода в легкие и т.д. Все процессы окисления, расщепления элементов и прочего, не обходятся без знаний и пересечения с этой дисциплиной.

[/attention]

Анатомия и физиология человека тесно связаны, ведь предмет изучения у них один. Характерной особенностью последней является более широкое исследование многих процессов в физиологии, а также погружение в научное обоснование тех или иных реакций. Вот несколько особенностей, которые отличают физиологию, и выделяют ее как самостоятельную дисциплину, являются:

  • Изучение основных законов жизнедеятельности человеческого тела и их механизмы.
  • Исследование отдельных клеток, физиологической системы и органов.
  • Рассмотрение специфических объектов, например эволюцию.
  • Изучение особенностей взаимодействия психики, ЦНС и внутреннее строение в целом.

Освоением знаний в области физиологии занимаются многие специалисты смежных профессий, к примеру, массажисты, спортивные тренеры, физиотерапевты, мануальные доктора и т.д. Это требуется, чтобы понять особенность протекания тех или иных процессов внутри тела или органа, и проводить адекватную и эффективную терапию или первую помощь, правильно оказывая воздействие.

Чем занимается психофизиология?

Созвучная по названия, но с другими предметами изучения, психофизиология притягивает сегодня не меньше внимания, чем физиология. Она занимается изучением физиологических основ поведения человека.

Чтобы ответить на вопрос, что изучает психофизиология, следует погрузиться нее чуть глубже, Это особый раздел науки, который связал воедино психологию и физиологию, поставив на первое место изучение роли биологических факторов на психику каждого индивидуума. Главными задачами этой области выделяют:

  • Изучение перенесения данных от ЦНС в различные области тела человека.
  • Исследование особенностей принятия тех или иных решений и выполнение их на уровне мозговой активности.
  • Изучение памяти, влияние мотивации, мышления и движения, как физиологических основ.
  • Исследование эмоциональной реакции на стрессовые факторы и в состоянии покоя.
  • Изучение возникновения нарушений в организме, причиной которых был психический фактор.

Психофизиология преследует цель научиться использовать динамику физических процессов для диагностики психической устойчивости. Привлекать психокоррекцию для оказания положительного воздействия на здоровье пациенты и улучшение его общего состояния.

Физиология дает ответы на множество нераскрытых тем, о том, как работает наш организм, как реагирует на раздражители, помогает расширить возможности для диагностики нарушений и развития различных патологий. Поэтому нельзя переоценить ее значение для современной медицины.

Источник: https://topkin.ru/voprosy/nauka-voprosy/chto-izuchaet-fiziologiya-cheloveka-opredelenie-chto-takoe-fiziologiya/

Физиология. Критический уровень деполяризации

Куд физиология это

Вся нервная деятельность успешно функционирует благодаря чередованию фаз покоя и возбудимости. Сбои в системе поляризации нарушают электрическую проводимость волокон. Но кроме нервных волокон есть и другие возбудимые ткани — эндокринная и мышечная.

Но мы рассмотрим особенности проводимых тканей, и на примере процесса возбуждения органических клеток расскажем о значении критического уровня деполяризации. Физиология нервной деятельности тесно связана с показателями электрического заряда внутри и снаружи нервной клетки.

Если один электрод присоединить к внешней оболочке аксона, а другой – к его внутренней части, то видна налицо разность потенциалов. Электрическая активность нервных проводящих путей основана на этой разности.

Что такое потенциал покоя и потенциал действия?

Все клетки нервной системы поляризованы, то есть имеют разный электрический заряд внутри и снаружи специальной мембраны. Нервная клетка всегда имеет свою липопротеиновую мембрану, имеющую функцию биоэлектрического изолятора. Благодаря мембранам создается потенциал покоя в клетке, который необходим для последующей активации.

Потенциал покоя поддерживается путем переноса ионов. Выход ионов калия и вход хлора увеличивает потенциал мембранного покоя.

Потенциал действия накапливается в фазе деполяризации, то есть подъема электрического заряда.

Фазы потенциала действия. Физиология

Итак, деполяризация в физиологии — это снижение мембранного потенциала. Деполяризация основа возникновения возбудимости, то есть потенциала действия для нервной клетки. При достижении критического уровня деполяризации никакой, даже сильный раздражитель не способен вызвать реакции нервных клеток. Натрия при этом очень много внутри аксона.

Сразу после этой стадии следует фаза относительной возбудимости. Ответ уже возможен, но лишь на сильный сигнал-раздражитель. Относительная возбудимость медленно переходит в фазу экзальтации. Что такое экзальтация? Это пик возбудимости тканей.

Все это время натриевые каналы активации закрыты. А их открытие произойдет, только когда нервное волокно разрядится. Реполяризация нужна для восстановления отрицательного заряда внутри волокна.

Итак, возбудимость, это в физиологии способность клетки или ткани отреагировать на раздражитель и генерировать какой-то импульс. Как мы выяснили, для работы клеткам нужен определенный заряд — поляризация. Нарастание заряда от минуса к плюсу называется деполяризацией.

После деполяризации всегда идет реполяризация. Заряд внутри после фазы возбуждения снова должен стать отрицательным, чтобы клетка могла подготовиться к следующей реакции.

Когда показания вольтметра зафиксированы на отметке 80 – это фаза покоя. Она наступает после окончания реполяризации, а если прибор показывает положительное значение (больше 0), значит, обратная реполяризации фаза, приближается к максимальному уровню — критическому уровню деполяризации.

Как передаются импульсы от нервных клеток к мышцам?

Электрические импульсы, возникшие при возбуждении мембраны, передаются по нервным волокнам с большой скоростью. Скорость сигнала объясняется строение аксона. Аксон частично обволакивается облочкой. А между участками с миелином находятся перехваты Ранвье.

Благодаря такому устройству нервного волокна положительный заряд чередуется с отрицательным, и деполяризационный ток практически единовременно распространяется вдоль всей длины аксона.

Сигнал о сокращении доходит до мышцы в доли секунды. Такой показатель, как критический уровень деполяризации мембраны означает ту отметку, при которой достигается пиковый потенциал действия.

После сокращения мышцы вдоль всего аксона запускается уже реполяризация.

Что происходит при деполяризации?

Что значит такой показатель, как критический уровень деполяризации? Это в физиологии означает, что нервные клетки уже готовы к работе. Исправная работа целого органа зависит от нормальной, своевременной смены фаз потенциала действия.

Критический уровень (КУД) равен приблизительно 40–50 Мв. В это время электрическое поле вокруг мембраны уменьшается. Степень поляризации напрямую зависит от того, сколько натриевых каналов клетки открыто.

Клетка в это время еще не готова к ответу, но собирает электрический потенциал. Этот период имеет название абсолютная рефрактерность. Длится фаза всего 0,004 с в нервных клетках, а в кардиомиоцитах – 0,004 с.

[attention type=red] [/attention]

После прохождения критического уровня деполяризации наступает супервозбудимость. Нервные клетки могут дать ответ даже на действие подпорогового раздражителя, то есть относительно слабого воздействие среды.

Функции натриевых и калиевых каналов

Итак, важный участник процессов деполяризации и реполяризации белковый ионовый канал. Разберемся, что подразумевает под собой это понятие.

Ионные каналы — это находящиеся внутри плазменной оболочки белковые макромолекулы. Когда они открыты, через них могут проходить ионны неорганического происхождения. Белковые каналы имеют фильтр.

Через натриевый проток проходит только натрий, через калиевый — только этот элемент.

Эти электроуправляемые каналы имеют двое ворот: одни активационные, обладают свойством пропускать ионы, другие инактивационные. В то время, когда мембранный потенциал покоя равен -90 мВ, ворота закрыты, но при начале деполяризации, натриевые каналы медленно открываются. Увеличение потенциала приводит к резкому закрытию створок протока.

Фактором, который влияет на активацию каналов, является возбудимость мембраны клетки. Под действием электрической возбудимости и запускаются 2 вида ионовых рецепторов:

  • запускается действие лиганд рецепторов — для хемозависимых каналов;
  • электрический сигнал подается для электроуправляемых каналов.

При достижении критического уровня деполяризации мембраны клетки рецепторы дают сигнал о том, что все натриевые каналы нужно закрыть, а калиевые начинают открываться.

Натриево-калиевый насос

Процессы передачи импульса возбуждения везде проходят благодаря электрической поляризации, осуществляемой за счет движения ионов натрия и калия. Движение элементов происходит на основе принципа активного транспорта ионов – 3 Na+ внутрь и 2 К+ наружу. Этот механизм обмена называется натриево-калиевым насосом.

Деполяризация кардиомиоцитов. Фазы сокращения сердца

Сердечные циклы сокращений также связаны с электрической деполяризацией проводимых путей. Сигнал о сокращении всегда исходит от СА-клеток, находящихся в правом предсердии, и распространяется по проводящим путям Гисса в пучок Тореля и Бахмана в левое предсердие. Правые и левые отростки пучка Гисса передают сигнал в желудочки сердца.

Нервные клетки быстрее деполяризуются и переносят сигнал благодаря наличию миелиновой оболочки, но мышечные ткани также постепенно деполяризуются. То есть их заряд из отрицательного превращается в положительный. Эта фаза сердечного цикла называется диастолой. Все клетки тут соединены между собой и действуют как один комплекс, поскольку работа сердца должна быть максимально скоординирована.

Когда наступает критический уровень деполяризации стенок правого и левого желудочков, генерируется выброс энергии — происходит сокращение сердца. Затем все клетки реполяризуются и готовятся к новому сокращению.

Депрессия Вериго

В 1889 году описано явление в физиологии, которое называется католической депрессией Вериго.

Критический уровень деполяризации — это уровень деполяризации, при котором все натриевые каналы уже инактивированы, а вместо них работают калиевые.

[attention type=green]

Если степень тока еще больше увеличивается, тогда значительно снижается возбудимость нервного волокна. А критический уровень деполяризации при действии раздражителей зашкаливает.

[/attention]

Во время депрессии Вериго скорость проведения возбуждения понижается, и, наконец, совсем спадает. Клетка начинает адаптироваться за счет изменения функциональных особенностей.

Адаптационный механизм

Бывает, при некоторых условиях деполяризующий ток долго не переключается. Это свойственно сенсорным волокнам. Постепенное длительное повышение такого тока сверх нормы в 50 мВ приводит к увеличению частоты электронных импульсов.

В ответ на такие сигналы повышается проводимость калиевой мембраны. Активируются более медленные каналы. В итоге возникает способность нервной ткани к повторным ответам. Это называется адаптацией нервных волокон.

При адаптации вместо большого количества коротких сигналов клетки начинают аккумулировать и отдавать одиночный сильный потенциал. А интервалы между двумя реакциями увеличиваются.

Источник: https://FB.ru/article/364837/fiziologiya-kriticheskiy-uroven-depolyarizatsii

Синапс. Физиология мышечных волокон

Куд физиология это

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

Синапс — это специфическое место контакта двух возбудимых систем (клеток) для передачи возбуждения.

«synapsis» — «соприкосновение, соединение, застежка»

на новости сайта в соцсетях!

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

По способу передачи сигналов:

  • механические,
  • химические,
  • электрические.

По виду медиатора: холинэргические и др.

Нервно-мышечный синапс (НМС) — химический, передача с помощью медиатора ацетилхолина.

Синонимы к слову НМС:

  • Нервно-мышечное соединение;
  • Моторная концевая пластинка.

Аксоны нервных клеток на своих окончаниях теряют миелиновую оболочку, ветвятся, и концевые веточки аксона утолщаются. Это пресинаптическая терминаль или бляшка или пуговка, которая погружается в углубление на поверхности мышечного волокна.

Покрывающая концевую веточку аксона поверхностная мембрана называется пресинаптической мембраной, т.е. это мембрана, покрывающая поверхность синаптической бляшки (терминали аксона).

Мембрана, покрывающая мышечное волокно в области синапса, называется постсинаптической мембраной, или концевой пластинкой. Она имеет извитую структуру, образуя многочисленные складки, уходящие вглубь мышечного волокна, за счет чего увеличивается площадь контакта.

На постсинаптической мембране находятся белковые структуры — рецепторы, способные связывать медиатор. В одном синапсе количество рецепторов достигает 10-20 млн.

Между пре- и постсинаптическими мембранами находится синаптическая щель, размеры ее в среднем 50 нм, она открывается в межклеточное пространство и заполнена межклеточной жидкостью.

В синаптической щели находится мукополисахаридное плотное вещество в виде полосок, мостиков и содержится фермент ацетилхолинэстераза.

В пресинаптической терминали находится большое количество пузырьков или везикул, заполненных медиатором — химическим веществом посредником, осуществляющим передачу возбуждения.

В нервно-мышечном синапсе медиатор — ацетилхолин (АХ).

АХ синтезируется из холина и уксусной кислоты (ацетил-коэнзима А) с помощью фермента холинэстеразы. Эти вещества перемещаются из тела нейрона по аксону к пресинаптической мембране. Здесь в пузырьках происходит окончательное образование АХ.

3 фракции медиатора:

  1. Первая фракция — доступная — располагается рядом с пресинаптической мембраной.
  2. Вторая фракция — депонированная — располагается над первой фракцией.
  3. Третья фракция — диффузно рассеянная — наиболее удаленная от пресинаптической мембраны.

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

6 этап

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

10 этап

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Особенности проведения возбуждения в нервно-мышечном синапсе

Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.

Суммация возбуждения соседних постсинаптических мембран.

Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.

[attention type=yellow]

Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.

[/attention]

Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.

Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.

Законы проведения возбуждения по нервам:

  1. Закон функциональной целостности нерва.
  2. Закон изолированного проведения возбуждения.
  3. Закон двустороннего проведения возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.

Физиология мышечных волокон

Три типа мышц:

  • скелетная (40-50% массы тела),
  • сердечная (менее 1%),
  • гладкая (8-9%).

Физиологические свойства скелетных мышц:

  1. Возбудимость — способность отвечать на действие раздражителя возбуждением.
  2. Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
  3. Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
  4. Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.

Физические свойства скелетных мышц:

  1. Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
  2. Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
  3. Силы мышц — способность мышцы поднять максимальный груз.
  4. Способность мышцы совершать работу.

Режимы сокращения:

  • Изотонический,
  • Изометрический,
  • Ауксотонический.

Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).

Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).

Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).

Механизм сокращения поперечно-полосатых мышц

Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).

Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин.

Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.

Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.

Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.

Тропонин образует утолщение на конце каждой нити тропомиозина.

Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.

В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.

[attention type=red]

Эти постики совершают «гребущие движения», в результате чего нити актина перемещаются этими мостиками относительно волокон миозина, происходит укорочение мышцы.

[/attention]

Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.

При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).

Гладкие мышцы

Гладкие мышцы — это мышцы, формирующие слой стенок полых внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток без поперечной исчерченности за счет хаотичного расположения миофибрилл.

Особенности гладких мышц:

  • Иннервируются волокнами вегетативной нервной системы (ВНС);
  • Обладают низкой возбудимостью:
  • Обладают низкой величиной МП (мембранного потенциала) — -50 — -60 мВ из-за более высокой проницаемости для ионов Na+
  • ПД (потенциал действия) отличается меньшей амплитудой и большей длительностью. Он формируется в основном за счет ионов Ca2+
  • Медленная проводимость:

Клетки в гладких мышцах функционально связаны между собой посредством щелевидных контактов — нексусов, которые имеют низкое электрическое сопротивление. За счет этих контактов ПД распространяется с одного мышечного волокна на другое, охватывая большие мышечные пласты, и в реакцию вовлекается вся мышца.

Гладкие мышцы способны осуществлять относительно медленные ритмические и длительные тонические сокращения.

Медленные ритмические сокращения обеспечивают перемещение содержимого органа из одной области в другую.

Длительные тонические сокращения, особенно сфинктеров полых органов, препятствуют выходу из них содержимого.

Это способность сохранять приданную им при растяжении или деформации форму. Благодаря пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии.

Особенность гладких мышц, отличающая их от скелетных. Благодаря автоматии гладкие мышцы могут сокращаться в условиях отсутствия иннервации. Важную роль в этом играет растяжение.

Растяжение является адекватным раздражителем для гладкой мускулатуры. Сильное и резкое растяжение гладких мышц вызывает их сокращение.

Сравнительная характеристика скелетных и гладких мышц:

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/sinaps-fiziologiya-myshechnyh-volokon

Медик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: