Лубяная паренхима это

Содержание
  1. Лубяная паренхима это
  2. Что такое паренхима?
  3. Строение паренхимы
  4. Нормальные показатели
  5. Повышенная эхогенность паренхимы почек – что это и чем это опасно?
  6. Диффузные изменения паренхимы и чем это опасно?
  7. Киста почки. Чем она опасна?
  8. Истончение паренхимы. В чем опасность?
  9. Другие возможные отклонения
  10. Луб дерева
  11. Как образуется древесина?
  12. Строение луба
  13. Функции луба
  14. Ткани растений: проводящие, механические и выделительные • биология-в.рф
  15. Ксилема
  16. Флоэма
  17. Механические (арматурные) ткани растений
  18. Коленхима
  19. Склеренхима
  20. Склеренхимные волокна
  21. Склереиды
  22. Выделительные тканирастений
  23. Внешние выделительные ткани
  24. Внутренние выделительные ткани
  25. Проводящие ткани
  26. Ксилема (древесина)
  27. Флоэма (луб)
  28. Жилка
  29. Как вода поднимается от корней к листьям, против силы тяжести?
  30. Луб или первичная и вторичная кора: строение и отличия от древесины
  31. Паренхима луба
  32. Сердцевинные лучи
  33. Ситовидные трубки
  34. Механические элементы

Лубяная паренхима это

Лубяная паренхима это

Заболевания паренхимы и отклонения от принятых норм очень опасны. При любом признаке недуга следует незамедлительно обратиться к врачу. К чему же может привести изменение паренхимы?

Что такое паренхима?

Паренхима – это совокупность клеток, то есть, ткань, которая составляет основную часть многих органов и отвечающая за их нормальное функционирование. В список органов входит щитовидная железа, почки, селезенка, печень и другие. Паренхима помогает контролировать уровень электролитов, очищать кровь и насыщать ее питательными веществами.

Строение паренхимы

Клетки паренхимы представляют собой небольшие комочки, у которых круглая или же овальная форма. Комочки сплетены мелкими кровеносными сосудами, в общей сложности их более миллиона. Она имеет два слоя: корковый слой и мозговой слой.

Нормальные показатели

Для каждого органа существуют свои показатели общепринятых норм.

Нормальные показатели паренхимы печени:

  • Края печени ровные, без каких-либо шероховатостей.
  • Размер правого полушария не более 13 см, а левого не более 7 см.
  • Диаметр портальной вены составляет не более 13 мм.
  • Общий желчный проток размером не более 8 мм.

Нормальные показатели поджелудочной железы:

  • В нормальном состоянии имеет однородную форму.
  • Так же, как и у печени, края должны быть ровными.
  • Длина протока не более 2 мм.
  • Размер должен варьироваться от 25 до 35 мм.
  • Никаких образований, по типу вздутий, опухолей и прочего быть не должно.

Нормальные показатели почки:

  • Достигает в размере не более 11 см.
  • Бобовидная форма, похожа на фасолину.
  • Края почки сглажены.
  • Масса одной почки не более 200 гр.

Повышенная эхогенность паренхимы почек – что это и чем это опасно?

Статистика показывает, что на данный момент времени все чаще прогрессируют болезни мочевыделительной системы, а именно почек.

Заболевания не всегда можно заметить по каким-либо симптомам, так как недуги протекают незаметно. Повышенную эхогенность можно распознать лишь при прохождении УЗИ почек. Стоит отметить, что УЗИ является настолько точным средством, для нахождения болезней, что способно выявить болезни на самых ранних стадиях.

Повышенная эхогенность паренхимы почек говорит о таких болезнях:

  • Гломерулонефрит. Протекает в тяжелой форме, при этом паренхима почек диффузно меняет, а именно, усиливает свою эхогенность.
  • Диабетическая нефропатия. Размеры почек увеличиваются, но, так называемые, пирамиды, которые располагаются в мозговом веществе, имеют пониженную эхогенность.
  • Доброкачественные или злокачественные образования. На отдельных участках почек может встречаться гиперэхогенность, которая свидетельствует об образовании кисты, опухоли и других подобных новообразований.

Также повышенная эхогенность может встретиться даже у плода в утробе, такое явление говорит о том, что у матери есть какие-либо заболевания почек, о которых она не знает. Для ребенка это заболевание будет врожденным, и сопровождать его на протяжении всей его жизни.

Диффузные изменения паренхимы и чем это опасно?

Диффузные изменения паренхимы – это изменение плотности паренхимы.

Например, при диффузном изменении паренхимы поджелудочной железы лечение не поможет и не потребуется, так как нужно лечить саму причину, которая послужила признаком изменений. К таким причинам относятся алкоголизм, курение, злоупотребление фастфудом, хронический панкреатит и другие.

При диффузных изменениях в печени лечение просто необходимо, так как печень очень важный орган, поддающийся отклонениям лучше других. Послужить изменениям могут такие причины, как чрезмерное употребление алкоголя, цирроз, набор или же резкое убавление веса, аутоиммунный гепатит и другие.

Диффузное изменение паренхимы опасно для всех органов, и приводит к тяжелым и опасным заболеваниям. Две главных причины, которые приводят к диффузному изменению – это алкоголь и сигареты. Многие врачи советуют отказаться от данных вещей, дабы обезопасить себя от таких болезней, как рак легких, цирроз печени, туберкулез и другие.

Киста почки. Чем она опасна?

Киста паренхимы – это доброкачественный тонкостенный нарост, образованный из серозной жидкости геморрагического вещества.

Киста – это образование, размер которого варьируется от 3 до 10 см, наполненное жидкостью и способное лопаться само по себе.

Киста всегда образуется лишь с одной стороны, то есть, только на левой или только на правой почке. Киста правой почки может загноиться и в итоге лопнуть, также она оказывает давление на сосуды, поэтому у человека повышается давление.

Есть некоторые симптомы, которые помогут узнать: есть киста или нет?

  • Кровь в моче. Нередко при наличии кисты на почках при мочеиспускании можно заметить кровяные сгустки, которые состоят из множества ниточек.
  • Боль в пояснице. Данный симптом может также быть вызван и циститом. Нужно идти к врачу, который даст точный вывод.
  • Повышенное артериальное давление.

Если киста лопнула без хирургического вмешательства, то это может привести к болезненным ощущениям, которые будут присутствовать на протяжении 3-5 дней, при мочеиспускании можно будет заметить кровь и гной. В данном случае следует незамедлительно обратиться за медицинской помощью.

Истончение паренхимы. В чем опасность?

Истончение паренхимы проявляется из-за хронических проблем в почках, которые обострились вследствие инфекции или же незаконченного лечения первичного заболевания.

Симптомами данного заболевания является боль в поясничном отделе и неприятные ощущения при мочеиспускании.

Истончение паренхимы – это не шутка и заниматься самолечением очень опасно. Истончение может привести к сморщиванию почек, и по виду они будут напоминать финики и изюм. Врачи рекомендуют после лечения какого-либо недуга почек, пройти УЗИ по истечении 2 месяцев, чтобы узнать, есть ли какое-либо развитие болезни и искоренить ее еще на первых стадиях.

Заболевание опасно тем, что в запущенной стадии может привести к удалению почки, а, следовательно, неполному их функционированию.

Другие возможные отклонения

Наиболее частые отклонения паренхимы возникают в печени и почках.

К ним относят:

  • Опухоль паренхимы. Например, рак, аденома и другие образования.
  • Кальцинат паренхимы. Скопление огромного количества солей, образовывается вследствие туберкулеза, пневмонии и других заболеваний, связанных с легкими.
  • Реактивное изменение паренхимы.

Паренхима – это очень важный элемент для органов человека, поэтому все болезни, связанные с ней, следует лечить незамедлительно.

Источник: https://naturalpeople.ru/lubjanaja-parenhima-jeto/

Луб дерева

Лубяная паренхима это

Человечество пользовалось древесиной на протяжении тысячелетий. Ее использовали для разных целей, главным образом, как источник топлива. Также древесина является отличным строительным материалом, из нее создают инструменты, оружие, мебель, тару, произведения искусства, бумагу.

Вследствие наличия годичных колец, которые во время роста, а также в результате сезонных колебаний температуры или уровня влажности, формируют в своём стволе большинство видов деревьев, ученые могут довольно точно определить регион, в котором росло дерево. Ежегодный мониторинг изменения ширины годичных колец и анализ содержания в них некоторых изотопов элементов, дает возможность более детально изучить состояние климата и атмосферы в древние времена.

Как образуется древесина?

Древесина – это одна из составляющих сосудисто-волокнистого пучка, она противопоставлена еще одной важной части пучка, формирующейся из того же прокамбия или камбия — лубу, или флоэме. В процессе формирования сосудисто-волокнистых пучков из прокамбия возможно два варианта событий:

  • все прокамбиальные клетки становятся элементами древесины и луба с образованием так называемых замкнутых пучков. Этот процесс характерен для высших споровых, однодольных и некоторых двудольных растений
  • на границе между древесиной и лубом остаётся прослойка деятельной ткани, которую называют камбий. При этом формируются пучки открытые, что характерно для двудольных и голосеменных растений.

При первом варианте событий количество древесины не изменяется, и растение не может утолщаться.

Если развитие идет по второму пути, то вследствие работы камбия ежегодно объем древесины увеличивается, и ствол растения медленно становится толще.

У древесных пород российского региона древесина находится ближе к центру (оси) дерева, а луб — находится ближе к окружности (периферии). Ряд других растений имеет несколько иное взаимное расположение древесины и луба.

Именно деление клеток камбия в стебеле обеспечивает его рост в толщину. В процессе деления камбиальных клеток ? дочерних образующихся клеток отделяется в древесину, а ? – в луб. По этой причине прирост очень заметен в древесине. Камбий делится не равномерно, этот процесс зависит от сезона.

В весенне – летний период деление активное, вследствие чего формируются крупные клетки, к осени деление замедляется, и формируются мелкие клетки. Зимой же камбий не делится. Таким образом, обеспечивается годичный прирост древесины, который хорошо заметен у многих деревьев, и называют его годичным кольцом.

По количеству годичных колец специалисты вычисляют возраст побега и целого дерева.

[attention type=yellow]

Древесина имеет в своем составе уже отмершие клеточные элементы с одеревеневшими, главным образом, толстыми оболочками. Состав луба, напротив, представлен элементами живых клеток, с живой протоплазмой, клеточным соком и тонкой неодеревеневшей оболочкой. В тоже время, в лубе могут попадаться элементы мёртвые, толстостенные и одеревеневшие.

[/attention]

Обе составляющие сосудисто-волокнистого пучка имеют и еще одно физиологическое отличие. По древесине из земли к листьям движется сырой сок, который является водой с растворёнными в ней полезными веществами. А вот по лубу вниз течет пластический сок.

Процесс одеревенения клеточных оболочек характеризуется пропитыванием целлюлозной оболочки специальными веществами, которые объединены под общим названием лигнин.

Наличие лигнина и вместе с тем одеревенение оболочки можно легко определить с помощью определенных реакций. Вследствие одеревенения, растительные оболочки растут в толщину, твердеют.

В тоже время при лёгкой проницаемости для воды они утрачивают способности поглощать воду и разбухать.

Строение луба

Флоэма — то же, что и луб. Она является проводящей тканью сосудистых растений. Именно по ней осуществляется транспортировка продуктов фотосинтеза к разным частям растения, где они используются или накапливаются.

В стеблях большей части растений древесный луб находится снаружи по отношению к ксилеме, a в листьях — обращен к нижней стороне жилок листовой пластинки. Проводящие пучки корней имеют чередующиеся тяжи флоэмы и ксилемы.

Луб дерева по происхождению делится на:

  • первичный, дифференциирующийся из прокамбия 
  • вторичный, дифференциирующийся из камбия. 

Главное отличие первичной флоэмы от вторичной заключается в полном отсутствии у первой сердцевинных лучей. Однако клеточный состав и первичной, и вторичной флоэмы идентичен. В их составе присутствуют клетки различной морфологии, и выполняют разные функции:

  • ситовидные элементы (клетки, трубки и клетки-спутницы). Эти элементы обеспечивают главный транспорт
  • склеренхимные элементы (склереиды и волокна), отвечают за опорную функцию
  • паренхимные элементы (паренхимные клетки), отвечают за ближний радиальный транспорт.

Ситовидные трубки живут совсем немного. Зачастую период их жизни не превышает 2-3 года, очень редко они доживают до 10-15 лет. Отмершие регулярно заменяют новые. Ситовидные трубки занимают немного места в лубе и чаще всего соединены в пучки. Помимо таких пучков в лубе присутствуют клетки механической ткани – лубяные волокна, а также клетки основной ткани.

Функции луба

Одной из главных функций, которые выполняет луб молодой, является флоэмный транспорт сока. Этот сок является раствором углеводов (у древесных растений — это главным образом сахароза).

Углеводы – это продукты фотосинтеза, в довольно высокой концентрации — 0,2—0,7 моль/литр (примерно от 7 до 25 %). Кроме углеводов в состав сока входят и другие ассимиляты и метаболиты (аминокислоты и фитогормоны) в намного меньших количествах.

Скорость транспорта достигает десятков сантиметров в час, что существенно выше скорости диффузии.

[attention type=red]

Флоэмный сок двигается от органов-доноров, в которых осуществляется процесс фотосинтеза к акцепторам — органам или областям, в которых эти продукты фотосинтеза используются или откладываются на потом.

[/attention]

Очень интенсивно потребляются ассимиляты в корневой системе, верхушках побегов, растущих листьях, репродуктивных органах.

Многие растения имеют особые органы запасания — луковицы, клубни и корневища, которые выполняют роль акцепторов.

Луб липы – это внутренний слой коры, который имеет светло- желтую окраску. Его задача – обеспечить прочность стебля. Лубяной слой довольно проблематично разорвать по ширине, однако вдоль стебля он легко распадается на тонкие волокна большой длины.

Лубяная часть стебля часто применяется в хозяйстве, к примеру, луб липы знаменит тем, что из него изготавливают рогожу и мочалки.

Отметим, что если кору на дереве по кругу перерезать до слоя древесины, то органические вещества больше не будут транспортироваться к корням, и дерево через время погибнет.

Источник: http://wood-prom.ru/clauses/spravochnye-dannye/lub-dereva

Ткани растений: проводящие, механические и выделительные • биология-в.рф

Лубяная паренхима это
Ткани растений: проводящие, механические и выделительные

Виды растительных тканей

Проводящие ткани растений

Проводящие ткани расположены внутри побегов и корней. Содержат ксилему и флоэму. Они обеспечивают растению два тока веществ: восходящий и нисходящий.

Восходящий ток обеспечивает ксилема – к надземным частям движутся растворенные в воде минеральные соли.

Нисходящий ток обеспечивает флоэма – органические вещества, синтезированные в листьях и зеленых стеблях, движутся к другим органам (к корням).

Ксилема и флоэма – это сложные ткани, которые состоят из трех основных элементов:

Проводящая тканьОсновные элементы:
проводящиемеханическиепаренхима
КсилемаСосуды и трахеидыДревесные волокнаДревесная паренхима
ФлоэмаСитовидные трубкиЛубяные волокнаЛубяная паренхима

Проводящую функцию выполняют также клетки паренхимы, служащие для транспорта веществ между тканями растения (например, сердцевинные лучи древесных стеблей обеспечивают перемещение веществ в горизонтальном направлении от первичной коры к сердцевине).

Ксилема

Ксилема (от греч. ксилон – срубленное дерево). Состоит из собственно проводящих элементов и сопровождающих клеток основной и механической тканей.

Созревшие сосуды и трахеиды – это мертвые клетки, которые обеспечивают восходящий ток (движение воды и минеральных веществ). Элементы ксилемы могут выполнять еще и опорную функцию.

По ксилеме весной к побегам поступают растворы не только минеральных солей, но и растворенные сахара, которые образуются вследствие гидролиза крахмала в запасающих тканях корней и стеблей (например, березовый сок).

Трахеиды – это древнейшие проводящие элементы ксилемы. Трахеиды представлены вытянутыми веретенообразными клетками с заостренными концами, расположенными одна над другой. Они имеют одревесневшие клеточные стенки с разной степенью утолщения (кольчатым, спиральным, пористым и т. п.

), которые не дают им распадаться, растягиваться. В клеточных стенках есть сложные поры, затянутые поровой мембраной, через которую проходит вода. Через поровую мембрану происходит фильтрация растворов. Движение жидкости по трахеидам медленное, так как поровая мембрана препятствует движению воды.

У высших споровых и голосеменных растений на трахеиды приходится около 95 % объема древесины.

Сосуды или трахеи, состоят из удлиненных клеток, расположенных одна над другой. Они образуют трубки при слиянии и отмирании отдельных клеток – члеников сосудов. Цитоплазма отмирает. Между клетками сосудов есть поперечные стенки, которые имеют большие отверстия.

В стенках сосудов есть утолщения разнообразной формы (кольчатые, спиральные и т. п.). Восходящий ток происходит по относительно молодым сосудам, которые с течением времени заполняются воздухом, закупориваются выростами соседних живых клеток (паренхимы) и выполняют далее опорную функцию.

По сосудам жидкость движется быстрее, чем по трахеидам.

Флоэма

Флоэма (от греч. флойос – кора) состоит из проводящих элементов и сопровождающих клеток.

Ситовидные трубки – это живые клетки, которые последовательно соединяются своими концами, не имеют органелл, ядра. Обеспечивают движение от листьев по стеблю к корню (проводят органические вещества, продукты фотосинтеза).

В них есть разветвленная сеть фибрилл, внутреннее содержимое сильно обводнено. Между собою разделены пленочными перегородками с большим количеством мелких отверстий (перфораций) – ситовидными (перфорационными) пластинками (напоминают сито).

Продольные оболочки этих клеток утолщенные, но не древеснеют. В цитоплазме ситовидных трубок разрушается тонопласт (оболочка вакуолей), и вакуолярный сок с растворенными сахарами смешивается с цитоплазмой. С помощью тяжей цитоплазмы соседние ситовидные трубки объединены в единое целое.

Скорость движения по ситовидным трубкам меньше, чем по сосудам. Функционируют ситовидные трубки 3-4 года.

Каждый членик ситовидной трубки сопровождают клетки паренхимы – клетки-спутники, которые секретируют вещества (ферменты, АТФ и т. п.), необходимые для их функционирования.

Клетки-спутники имеют большие ядра, заполнены цитоплазмой с органеллами. Они присущи не всем растениям. Их нет во флоэме высших споровых и голосеменных растений.

Клетки-спутники помогают осуществить процесс активного транспорта по ситовидным трубкам.

[attention type=green]

Флоэма и ксилема образуют сосудисто-волокнистые (проводящие) пучки. Их можно увидеть в листьях, стеблях травянистых растений. В стволах деревьев проводящие пучки сливаются между собой и образуют кольца. Флоэма входит в состав луба и расположена ближе к поверхности. Ксилема входит в состав древесины и содержится ближе к сердцевине.

[/attention]

Сосудисто-волокнистые пучки бывают закрытые и открытые – это таксономический признак. Закрытые пучки не имеют между слоями ксилемы и флоэмы слоя камбия, поэтому образование новых элементов в них не происходит.

Закрытые пучки встречаются преимущественно у однодольных растений. Открытые сосудисто-волокнистые пучки между флоэмой и ксилемой имеют слой камбия. Вследствие деятельности камбия пучок разрастается и происходит утолщение органа.

Открытые пучки встречаются преимущественно у двухдольных и голосеменных растений.

Механические (арматурные) ткани растений

Механические (арматурные) ткани растений

Выполняют опорные функции. Образуют скелет растения, обеспечивают его прочность, придают упругость, поддерживают органы в определенном положении. Не имеют механических тканей молодые участки растущих органов. Наиболее развиты механические ткани в стебле. В корне механическая ткань сосредоточена в центре органа. Различают коленхиму и склеренхиму.

Коленхима

Коленхима (от греч. кола – клей и энхима – налитое) – состоит из живых хлорофиллоносных клеток с неравномерно утолщенными стенками. Различают угловую и пластинчатую коленхимы. Угловая коленхима состоит из клеток, которые имеют шестиугольную форму.

Утолщение происходит вдоль ребер (по углам). Встречается в стеблях двудольных растений (преимущественно травянистых) и черенках листьев. Не мешает росту органов в длину. Пластинчатая коленхима имеет клетки с формой параллелепипеда, в котором утолщена лишь пара стенок, параллельных поверхности стебля.

Встречается в стеблях древесных растений.

Склеренхима

Склеренхима (от греч. склерос – твердый) – это механическая ткань, которая состоит из одревесневших (пропитанных лигнином) преимущественно мертвых клеток, которые имеют равномерно утолщенные клеточные стенки. Ядро и цитоплазма разрушаются. Различают две разновидности: склеренхимные волокна и склереиды.

Склеренхимные волокна

Поперечный срез стебля герани

Клетки имеют удлиненную форму с заостренными концами и поровыми каналами в клеточных стенках. Стенки клеток утолщенные и очень крепкие. Клетки плотно прилегают одна к другой. На поперечном срезе – многогранные.

В древесине склеренхимные волокна называются древесными. Они являются механической частью ксилемы, защищают сосуды от давления других тканей, ломкости.

Склеренхимные волокна луба называются лубяными. Обычно они неодревесневшие, крепкие и эластичные (используются в текстильной промышленности – волокна льна и т. п.).

Склереиды

Образуются из клеток основной ткани вследствие утолщения клеточных стенок, пропитки их лигнином. Имеют разную форму и встречаются в разных органах растений. Склереиды с одинаковым диаметром клеток называются каменистыми клетками. Они наиболее прочные. Встречаются в косточках абрикосов, вишен, скорлупе грецких орехов и т. п.

Склереиды также могут иметь звездчатую форму, расширения на обоих концах клетки, палочковидную форму.

Выделительные ткани растений

Запасающие ткани растений

В результате процесса метаболизма в растениях образуются вещества, которые по разным причинам почти не используются (за исключением млечного сока). Обычно эти продукты накапливаются в определенных клетках. Представлены выделительные ткани группами клеток или одиночными. Делятся на внешние и внутренние.

Внешние выделительные ткани

Внешние выделительные ткани представлены видоизменениями эпидермы и особыми железистыми клетками в основной ткани внутри растений с межклеточными полостями и системой выделительных ходов, которыми секреты выводятся наружу.

Выделительные ходы в разных направлениях пронизывают стебли и частично листья и имеют оболочку из нескольких слоев отмерших и живых клеток. Видоизменения эпидермы представлены многоклеточными (реже одноклеточными) железистыми волосками или пластинками разнообразного строения.

Внешние выделительные ткани производят эфирные масла, бальзамы, смолы и т. п.

Известно около 3 тыс. видов голосеменных и покрытосеменных растений, которые производят эфирные масла. Около 200 видов (лавандовое, розовое масла и др.) из них используют как лечебные средства, в парфюмерии, кулинарии, изготовлении лаков и т. п.

Эфирные масла – это легкие органические вещества разного химического состава.

Их значение в жизни растений: запахом привлекают опылителей, отпугивают врагов, некоторые (фитонциды) – убивают или подавляют рост и размножение микроорганизмов.

Смолы образуются в клетках, которые окружают смоляные ходы, как продукты жизнедеятельности голосеменных (сосна, кипарис и т. п.) и покрытосеменных (некоторые бобовые, зонтичные и т. п.) растений. Это – разные органические вещества (смоляные кислоты, спирты и т. п.).

Наружу выделяются с эфирными маслами в виде густых жидкостей, которые называются бальзамами. Они имеют антибактериальные свойства. Используются растением в природе и человеком в медицине для заживления ран. Канадский бальзам, который получают из пихты бальзамической, применяют в микроскопической технике для изготовления микропрепаратов.

Основу бальзамов хвойных составляет скипидар (используют как растворитель красок, лаков и т. п.) и твердая смола – канифоль (используют при паянии, изготовлении лаков, сургуча, натирании струн смычковых музыкальных инструментов).

Окаменелая смола хвойных деревьев второй половины мелово-палеогенового периода называется янтарь (используется как сырье для ювелирных изделий).

Железы, расположенные в цветке или на разных частях побегов, клетки которых выделяют нектар, называются нектарниками. Они образованы основной тканью, имеют протоки, которые открываются наружу.

[attention type=yellow]

Выросты эпидермы, которые окружают проток, придают нектарнику разную форму (горбовидную, ямковидную, рожковидную и т. п.). Нектар – это водный раствор глюкозы и фруктозы (концентрация составляет от 3 до 72 %) с примесями ароматических веществ.

[/attention]

Основная функция – привлечение насекомых и птиц для опыления цветков.

Благодаря гидатодам – водяным устьицам – происходит гуттация – выделение капельной воды растениями (при транспирации вода выделяется в виде пара) и солей. Гуттация – это защитный механизм, который происходит тогда, когда с удалением лишней воды не справляется транспирация. Характерна для растений, которые растут во влажном климате.

Специальные железы насекомоядных растений (известно свыше 500 видов покрытосеменных) выделяют ферменты, которые разлагают белки насекомых. Таким образом, насекомоядные растения восполняют недостаток азотистых соединений, так как их в почве не хватает. Всасываются переваренные вещества через устьица. Наиболее известны пузырчатка и росянка.

Железистые волоски накапливают и выводят наружу, например, эфирные масла (мята и т. п.), ферменты и муравьиную кислоту, которые вызывают ощущение боли и приводят к ожогам (крапива) и др.

Внутренние выделительные ткани

Внутренние выделительные ткани – это вместилища веществ или отдельные клетки, которые на протяжении жизни растения наружу не открываются. Это, например, млечники – система удлиненных клеток некоторых растений, по которым движется сок.

Сок таких растений является эмульсией водного раствора сахаров, белков и минеральных веществ с каплями липидов и других гидрофобных соединений, называется латексом и имеет молочно-белый (молочай, мак и т. п.) или оранжевый (чистотел) цвета.

В млечном соке некоторых растений (например, гевея бразильская) содержится значительное количество каучука.

К внутренней выделительной ткани принадлежат идиобласты – отдельные разрозненные клетки среди других тканей. В них накапливаются кристаллы щавелевокислого кальция, дубильные вещества и т. п. Клетки (идиобласты) цитрусовых (лимон, мандарин, апельсин и т. п.) накапливают эфирные масла.

Тканевой уровеньУровни организации живого

Источник: https://xn----9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/tkani-rastenij-provodyashhie-mehanicheskie-i-vydelitelnye/

Проводящие ткани

Лубяная паренхима это

«В природе нет ничего бесполезного» – Мишель де Монтень

Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня до клеток листа.

Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) – 117 метров в высоту.

И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку. Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты обмена веществ из них.

Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ.

Имеется два направления тока: от корней к листьям (восходящий ток) и от листьев к корням (нисходящий ток).

Логическим путем можно угадать многие научные факты, даже не зная их.

К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани – ксилемы (древесины).

От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани – флоэмы (луба).

[attention type=red]

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, которая в процентном соотношении может составить до 25% от их массы. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.

[/attention]

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей.

В толще проводящей ткани находятся отнюдь не только те самые трахеиды и сосуды, ее пронизывают многочисленные механические волокна – древесинные, обеспечивающие каркасность и прочность.

В ксилеме содержатся также запасающие структуры, представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.

  • Трахеиды
  • Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую, спиралевидную, кольчатую.

  • Сосуды
  • Длинные трубки, представляющие собой слияние отдельных мертвых клеток “члеников” в единый “сосуд”. Ток жидкости идет из нижележащих отделов в вышележащие благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению он растягивается и обеспечивает ток воды и минеральных солей.

  • Древесинные волокна (либриформ)
  • Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной клеточной стенкой, которая придает ксилеме механическую прочность.

  • Паренхимные клетки (древесинная паренхима)
  • Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Флоэма (луб)

Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания, подземные части, или “складировать” на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод – дисахарид сахароза.

Эта ткань представлена ситовидными трубками, генез (от греч. genesis – происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная флоэма – из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.

Разберемся с компонентами, которые входят в состав флоэмы:

  • Ситовидные элементы
  • Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток – “члеников”, соединенных в единую цепь. Между “члениками” имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито – вот откуда берется название ситовидных трубок :)Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность ситовидных трубок.

  • Склеренхимные элементы (лубяные волокна)
  • Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

  • Паренхимные элементы (лубяная паренхима)
  • Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

Жилка

Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма – снизу. Над пучком и под ним располагаются уголковая или пластинчатая колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок. Жилки развиваются из прокамбия, располагаются в центральном осевом цилиндре.

Существует два вида жилок:

  • Открытые
  • Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно обнаружить во всех органах двудольных растений.

  • Закрытые
  • Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань – склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и присасывающего листового.

  • Корневое давление
  • Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться в сосуды.

  • Транспирация
  • Работа верхнего концевого двигателя заключается в транспирации – испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости. Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.

Источник: https://studarium.ru/article/4

Луб или первичная и вторичная кора: строение и отличия от древесины

Лубяная паренхима это

Луб проводит органические вещества от кроны вниз (нисходящий ток) и для проведения воды не служит, так как при вырезании коры кольцом вокруг ствола (кольцевание) приток воды к кроне не прерывается. Механические ткани в лубе древесных пород всегда древеснеют, поэтому одревеснение нельзя считать признаком, отличающим древесину от луба.

Подобно древесине луб также состоит из 3 тканей:

  1.  Запасающих — сердцевинных лучей и лубяной паренхимы;
  2.  Проводящих — ситовидных трубок;
  3.  Механических — лубяных волокон и иногда каменистых клеток.

Паренхима луба

Паренхима луба, как и паренхима древесины, состоит из паренхимы сердцевинных лучей и паренхимных волокон. От паренхимы древесины она отличается целлюлозными оболочками и более разнообразным содержимым.

В ней часто встречаются не только крахмал и масло, но и кристаллы щавелевокислого кальция (одиночные и в сростках — друзах), дубильные вещества и различные сильнодействующие, ценные в медицине вещества, например салицин, хинин и др. Благодаря этому кора некоторых древесных пород, как например дуба, ели, ивы применяется для дубления, а кора крушины, хинного дерева и др.

в медицине. В растении эти вещества играют некоторую защитную роль, предохраняя их от повреждений разными паразитами, а также от огладывания зайцами, мышами, козами и т. д.

Паренхимные клетки с кристаллами иногда располагаются в продольном направлении с большой правильностью, прилегая к лубяным волокнам. Тогда они носят особое название кристаллоносной паренхимы и играют большую роль при определении древесных пород по строению коры.

Подобно заменяющим волокнам древесины, в лубе также встречаются живые клетки в виде волокон, не разделенных поперечными перегородками на плренхиматические клетки. Эти нежные живые клетки мало отличаются по форме от произведших их клеток камбия и поэтому носят название камбиформа.

Паренхимные клетки иногда, как например у сосны, лиственницы и других хвойных, располагаются правильными тангентальными полосками, чередующимися с рядами ситовидных трубок. Ежегодно образуется одна, реже две полоски.

Сердцевинные лучи

Сердцевинные лучи луба всегда составляют продолжение лучей древесины, но обычно они значительно шире древесных лучей и в молодых ветках нечувствительно переходят в паренхиму первичной коры.

Так же, как в древесине, здесь иногда встречаются лучи, составленные из разнородных клеток.

Так, у сосны на радиальном разрезе можно видеть, что средние клетки вытянуты получу (лежачие), а верхние и нижние по волокнам (стоячие).

Ситовидные трубки

Ситовидные трубки древесных пород каких-нибудь особенных отличий не обнаруживают. Только здесь встречается более сильное развитие сит.

Они находятся не только на поперечных, но и на боковых стенках ситовидных трубок.

У некоторых древесных пород (например, у липы) встречаются сложные сита, причем в лестнично продырявленном сосуде перегородка поставлена косо и состоит из ряда сит, разъединенных поперечными перекладинами вроде перекладин лестницы.

Ситовидные трубки остаются живыми очень не долго, всего 2—3 года. На расстоянии 0,1—0,2 мм от камбия они уже отмирают, и закупориваются мозолистым веществом, легко растворимым в щелочах. Через несколько лет, когда трубки отмирают, мозолистое вещество растворяется и сита снова имеют вид сеточек.

В листьях такого растворения не происходит и мозолистое вещество сбрасывается вместе с ними. Отмирание ситовидных трубок конечно не означает отмирания всего луба. Лубяная паренхима остается жить еще долго — 12—25 лет после этого. Ее клеточки даже разрастаются и делятся, пока их не отрежет слой пробки.

Механические элементы

Механические элементы луба представлены лубяными волокнами и каменистыми клетками. Первые, соединяясь группами, образуют длинные тяжи, окутывающие ствол в виде сетки.

Наряду с настоящими лубяными волокнами иногда встречаются, подобно перегородчатому либриформу древесины, перегородчатые лубяные волокна, разделенные тонкими перегородками.

Кроме лубяных волокон механическую роль играют каменистые клетки, которые образуются из паренхимы путем утолщения оболочек. Последние при этом всегда древеснеют и клетки отмирают.

Механические ткани — не необходимый элемент луба. У сосны, например, он совершенно отсутствует, у других древесных пород имеются только лубяные волокна (липа) или только каменистые клетки (ель, береза), и наконец у третьей категории те и другие (дуб, ива, ольха, клен).

Расположение тканей луба не имеет той правильности и периодичности, которые наблюдаются в древесине.

Можно только наблюдать чередование слоев тонкостенных элементов (ситовидных трубок и паренхимы) с толстостенными лубяными волокнами. В этом случае говорят о толстостенном и тонкостенном лубе.

У липы, дуба и можжевельника чередование того и другого луба довольно правильно и хорошо заметно, причем ежегодно образуется 2 слоя толстостенного луба.

С возрастом луба, следовательно, в его наружных слоях, соотношение тканей несколько меняется.

[attention type=green]

Паренхима луба между лубяными волокнами и в сердцевинных лучах очень сильно размножается так, что слои толстостенного луба разбиваются на отдельные, далеко раздвинутые друг от друга группы.

[/attention]

Ситовидные трубки после отмирания сплющиваются в такой степени, что от них остаются только небольшие бесформенные прослойки прижатых друг к другу оболочек. Наконец в паренхиме отдельные группы клеток древеснеют и превращаются в каменистые клетки, делающие кору более твердой.

Источник: https://estestvoznanye.ru/lub-ili-pervichnaya-i-vtorichnaya-kora

Медик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: