Мейоз 2n4c таблица

Содержание
  1. Клеточный цикл. Интерфаза. Амитоз. Митоз и мейоз • биология-в.рф
  2. Клеточный цикл
  3. Интерфаза
  4. Интерфаза включает:
  5. Амитоз
  6. Митоз
  7. Фазы митоза:
  8. Мейоз
  9. Мейоз I:
  10. Мейоз II:
  11. Мейоз – Молекулярная биология
  12. Отличия мейоза от митоза по итогам
  13. Отличия мейоза от митоза по ходу
  14. Мейоз фазы деления клетки (Таблица)
  15. Мейоз фазы деления клетки таблица
  16. Схема первое и второе деление мейоза
  17. Самая удобная и увлекательная подготовка к ЕГЭ
  18. Хромосомный набор
  19. Соматические и половые клетки
  20. Периоды интерфазы
  21. Деление эукариотических клеток
  22. Фазы митоза
  23. Фазы мейоза
  24. Деление прокариотических клеток
  25. Мейоз – понятие, последовательность и особенности протекания процессов
  26. Фазы кратко
  27. Первый этап
  28. Профаза I
  29. Метафаза I
  30. Анафаза I
  31. Телофаза I
  32. Второе деление
  33. Профаза II
  34. Метафаза II
  35. Анафаза II
  36. Телофаза II
  37. Типы мейоза
  38. Жизненный цикл клетки: интерфаза и митоз
  39. Митоз – деление соматических клеток

Клеточный цикл. Интерфаза. Амитоз. Митоз и мейоз • биология-в.рф

Мейоз 2n4c таблица
Клеточный цикл. Интерфаза. Амитоз. Митоз и мейоз

Клеточный цикл

Клеточный цикл – это период жизни клетки от одного деления до другого. Состоит из интерфазы и периодов деления. Продолжительность клеточного цикла у разных организмов разная (у бактерий – 20-30 мин, у клеток эукариот – 10-80 ч).

Интерфаза

Интерфаза (от лат. inter – между, phases – появление) – это период между делениями клетки или от деления до ее гибели. Период от деления клетки до ее гибели характерен для клеток многоклеточного организма, которые после деления утратили способность к нему (эритроциты, нервные клетки и т. п.). Интерфаза занимает приблизительно 90 % времени клеточного цикла.

Интерфаза включает:

1) пресинтетический период (G1) – начинаются интенсивные процессы биосинтеза, клетка растет, увеличивается в размерах. Именно в этом периоде до смерти остаются клетки многоклеточных организмов, которые утратили способность к делению;

2) синтетический (S) – происходит удвоение ДНК, хромосом (клетка становится тетраплоидной), удваиваются центриоли, если они есть;

3) постсинтетический (G2) – в основном прекращаются процессы синтеза в клетке, происходит подготовка клетки к делению.

Деление клетки бывает прямым (амитоз) и непрямым (митоз, мейоз).

Амитоз

Амитоз – прямое деление клеток, при котором не образуется аппарат деления. Ядро делится вследствие кольцевой перетяжки. Не происходит равномерного распределения генетической информации. В природе амитозом делятся макронуклеусы (большие ядра) инфузорий, клетки плаценты у млекопитающих. Амитозом могут делиться клетки раковых опухолей.

Непрямое деление связано с образованием аппарата деления. В аппарат деления входят компоненты, которые обеспечивают равномерное распределение хромосом между клетками (веретено деления, центромеры, если есть – центриоли).

Деление клетки условно можно разделить на деление ядра (кариокинез) и деление цитоплазмы (цитокинез). Последний начинается к концу деления ядра. Наиболее распространены в природе митоз и мейоз.

Иногда встречается эндомитоз – непрямое деление, которое происходит в ядре без разрушения его оболочки.

Митоз

Митоз – это непрямое деление клетки, при котором из материнской образуются две дочерние клетки с идентичным набором генетической информации.

Фазы митоза:

1) профаза – происходит уплотнение хроматина (конденсация), хроматиды спирализируются и укорачиваются (становятся заметными в световой микроскоп), исчезают ядрышки и ядерная оболочка, образуется веретено деления, его нити прикрепляются к центромерам хромосом, центриоли делятся и расходятся к полюсам клетки;

2) метафаза – хромосомы максимально спирализированы и располагаются вдоль экватора (в экваториальной пластинке), гомологичные хромосомы лежат рядом;

3) анафаза – нити веретена деления сокращаются одновременно и растягивают хромосомы к полюсам (хромосомы становятся однохроматидными), самая короткая фаза митоза;

4) телофаза – хромосомы деспирализируются, образуются ядрышки, ядерная оболочка, начинается деление цитоплазмы.

Митоз характерен преимущественно для соматических клеток. Благодаря митозу сохраняется постоянство числа хромосом. Способствует увеличению числа клеток, поэтому наблюдается при росте, регенерации, вегетативном размножении.

Мейоз

Мейоз (от греч. мейозис – уменьшение) – это непрямое редукционное деление клетки, при котором из материнской образуются четыре дочерние, располагающие неидентичной генетической информацией.

Различают два деления: мейоз I и мейоз II. Интерфаза I сходна с интерфазой перед митозом. В постсинтетическом периоде интерфазы процессы синтеза белка не прекращаются и продолжаются в профазе первого деления.

Мейоз I:

– профаза I – хромосомы спирализируются, ядрышко и ядерная оболочка исчезают, образуется веретено деления, гомологичные хромосомы сближаются и слипаются вдоль сестринских хроматид (как молния в замке) – происходит конъюгация, при этом образуются тетрады, или биваленты, образуется перекрест хромосом и обмен участками – кроссинговер, потом гомологичные хромосомы отталкиваются одна от другой, но остаются сцепленными в участках, где состоялся кроссинговер; процессы синтеза завершаются;

– метафаза I – хромосомы располагаются вдоль экватора, гомологичные –двухроматидные хромосомы располагаются одна напротив другой по обе стороны экватора;

– анафаза I – нити веретена деления одновременно сокращаются, растягивают по одной гомологичной двухроматидной хромосоме к полюсам;

– телофаза I (если есть) – хромосомы деспирализируются, образуются ядрышко и ядерная оболочка, происходит распределение цитоплазмы (клетки, которые образовались, гаплоидны).

Интерфаза II (если есть): не происходит удвоения ДНК.

Мейоз II:

– профаза II – уплотняются хромосомы, исчезают ядрышко и ядерная оболочка, образуется веретено деления;

– метафаза II – хромосомы располагаются вдоль экватора;

– анафаза II – хромосомы при одновременном сокращении нитей веретена деления расходятся к полюсам;

– телофаза II – деспирализируются хромосомы, образуются ядрышко и ядерная оболочка, делится цитоплазма.

Мейоз происходит перед образованием половых клеток. Позволяет при слиянии половых клеток сохранять постоянство числа хромосом вида (кариотип). Обеспечивает комбинативную изменчивость.

Клеточный уровеньУровни организации живого

Источник: https://xn----9sbecybtxb6o.xn--p1ai/obshchaya-biologiya/kletochnyj-tsikl-interfaza-amitoz-mitoz-i-mejoz/

Мейоз – Молекулярная биология

Мейоз 2n4c таблица

Мейоз – это деление, при котором получаются половые клетки (у растений – споры). Биологическое значение мейоза:

  • рекомбинация (перемешивание наследственной информации)
  • редукция (уменьшение количества хромосом в 2 раза).

Отличия мейоза от митоза по итогам

1. После митоза получается две клетки, а после мейоза – четыре.

2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

3. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

4. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения  обеспечивает постоянство числа хромосом).

Отличия мейоза от митоза по ходу

1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).

2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.

4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.

Второе деление мейоза ничем не отличается от митоза. Как и в митозе, в анафазе II мейоза к полюсам клетки расходятся одинарные сестринские хромосомы (бывшие хроматиды). (сайт)

При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет) и последующего развития из оплодотворенной яйцеклетки — зиготы.

Половые клетки родителей обладают гаплоидным набором (n) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому.

[attention type=yellow]

Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.

[/attention]

Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.

Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу.

В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление).

 Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).

В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией.

Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам.

В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления.

генетического материала остается прежним (2n2хр).

В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. генетического материала не изменяется (2п2хр).

В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). генетического материала становится 1n2хр у каждого полюса.

В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).

Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.

Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 — профаза; 6 —метафаза; 7 — анафаза; 8 — телофаза; 9 — интеркинез. Мейоз II; 10 —метафаза; II —анафаза; 12 — дочерние клетки.

В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости.

Изменений содержания генетического материала не происходит (1n2хр).

В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).

[attention type=red]

Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.

[/attention]

Биологическое значение мейоза:

1)  является основным этапом гаметогенеза;

2)  обеспечивает передачу генетической информации от организма к организму при половом размножении;

3)  дочерние клетки генетически не идентичны материнской и между собой.

Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются.

Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом.

Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).

Рис. 2. Схема гаметогенеза: à — сперматогенез; á — овогенез

Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении

Источник: Краснодембский Е. Г.”Общая биология: Пособие для старшеклассников и поступающих в вузы” 

Н. С. Курбатова, Е. А. Козлова “Конспект лекций по общей биологии” 

Р.Г. Заяц “Биология для абитуриентов. Вопросы, ответы, тесты, задачи” сайт

Источник: https://www.sites.google.com/site/molekularnaabiologia/mejoz

Мейоз фазы деления клетки (Таблица)

Мейоз 2n4c таблица

Мейоз — это способ деления, в результате которого из одной диплоидной (2n) клетки получается четыре гаплоидные (n) клетки, называемые гаметами (яйцеклетки или сперматозоиды).

Значение мейоза:

1)  Он обеспечивает возможность полового размножения – иначе количество хромосом удваивалось бы при оплодотворении.

2)  Кроссинговер, независимое распределение и случайное оплодотворение способствуют генетической изменчивости. Это обеспечивает новый материал для естественного отбора и эволюции.

Мейоз фазы деления клетки таблица

Фазы деления мейозаСтадииЯдроЦитоплазма органеллыСинтетические процессы и Клетка
ИнтерфазаG1ДиплоидноеАналогичны интерфазе митоза
SТетраплоидное
G2
Профаза 1ПролептонемаСпирализация хромосом. Ядерная оболочка и ядрышко сохраненыСинтез некоторых РНК и белков
ЛептонемаДальнейшая спирализация хромосом, становятся видимыми d-хромосомы (46). Ядерная оболочка и ядрышко сохранены
ЗигонемаГомологичные диплоидные d-xpoмосомы выстраиваются рядом, укорачиваются и сцепляются (конъюгация), образуя биваленты. Каждый бивалент состоит из двух d-хромосом (4 хроматиды). Ядро тетраплоидное. Каждая пара гомологичных хромосом связана между собой синаптонемальным комплексом.
ПахинемаМежду хроматидами возникают хиазмы. Кроссинговер в 2 – 3 участках каждого бивалента. Разьединяются хроматиды, которые остаются связанными в области хиазм
Диплонема (сперматозоиды – несколько дней, яйцеклетки – годы)Распад синаптонемальных комплексов. Конъюгировавшие хромосомы раздвигаются, гомологичные хромосомы каждого бивалента остаются связанными хиазмами
ДиакинезКонденсация хромосом, гомологичные d-хромосомы связаны хиазмами, сестринские хроматиды – центромерами. Разрушается ядерная оболочка и ядрышкиРеплицированные центриоли направляются к полюсам. Образуется веретено деления
Метафаза 1Хромосомы выстраиваются в экваториальной плоскости, образуя метафазную пластинку. Хромосомные микротрубочки прикрепляются к центромере со стороны полюса. Центромеры гомологичных хромосом расположены по обе стороны экватора. Хиазмы сохраняются
Анафаза 1Хиазмы распадаются, гомологичные d-хромосомы разделяются и расходятся к полюсам. Сестринские хроматиды остаются связанными между собой центромерами. Не происходит репликации центромерной ДНКИнвагинация цитолеммы, образование борозды деления
Телофаза 1Формируется ядерная оболочка и ядрышкиБорозда деления углубляется
Цитокинез 1В каждой дочерней клетке по 23 d- хромосомыКлетка разделяется, образуются 2 гаплоидные клетки по 23 d-хромосомы каждая
Интерфаза 2 очень короткаяДНК не реплицируется. Ядра диплоидные
Профаза 2Аналогичны фазам митозаВо втором делении мейоза (метафаза 2, анафаза 2 и телофаза 2) расходятся сестринские хроматиды каждой хромосомы. В конце телофазы 2 в результате цитокинеза образуются дочерние клетки, содержащиее в два раза меньше хромосом, чем материнская клетка. Кроме того, хромосомы гамет содержат новые комбинации генов, возникшие в результате кроссинговера и независимого распределения.              Образуются гаплоидные клетки
Метафаза 2
Анафаза 2
Телофаза 2
Цитокинез 2

Схема первое и второе деление мейоза

_______________

Источник информации:

1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.

2. Общая биология / Левитин М. Г. — 2005.

Источник: https://infotables.ru/biologiya/75-obshchaya-biologiya/1026-mejoz-fazy-deleniya

Самая удобная и увлекательная подготовка к ЕГЭ

Мейоз 2n4c таблица

Совокупность хромосом, содержащихся в ядре, называется хромосомным набором. Число хромосом в клетке и их форма постоянны для каждого вида живых организмов.

Пшеница твёрдая28Гидра32
Пшеница мягкая42Дождевой червь36
Рожь14Таракан48
Кукуруза20Пчела16
Подсолнечник34Дрозофила8
Картофель48Кролик44
Огурец14Шимпанзе48
Яблоня34Человек46

Соматические клетки обычно диплоидны (содержат двойной набор хромосом — 2n). В этих клетках хромосомы представлены парами. Диплоидный набор хромосом клеток конкретного вида живых организмов, характеризующийся числом, размером и формой хромосом, называют кариотипом.

Хромосомы, принадлежащие к одной паре, называются гомологичными. Одна из них унаследована от отцовского организма, другая — от материнского. Хромосомы разных пар называются негомологичными.

Они отличаются друг от друга размерами, формой, местами расположения первичных и вторичных перетяжек. Хромосомы, одинаковые у обоих полов, называются аутосомами. Хромосомы, по которым мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами.

В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как X- и Y-хромосомы. Женщины имеют две X-хромосомы, а мужчины одну Х- и одну Y-хромосому.
Половые клетки гаплоидны (содержат одинарный набор хромосом — n).

В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Хромосомный набор

Хромосомный набор — совокупность хромосом, содержащихся в ядре. В зависимости от хромосомного набора клетки бывают соматическими и половыми.

Соматические и половые клетки

ТипХромосомный наборХарактеристика
Соматические2nДиплоидны — содержат двойной набор хромосом. В этих клетках хромосомы представлены парами. Хромосомы, принадлежащие к одной паре, называются гомологичными.
Половые1nГаплоидны — содержат одинарный набор хромосом. В этих клетках хромосомы представлены в единственном числе и не имеют пары в виде гомологичной хромосомы.

Периоды интерфазы

ПериодыЧисло хромосом и хроматидПроцессы
Пресинтетический (G1)2n2cУвеличивается объем цитоплазмы и количество органоидов, происходит рост клетки после предыдущего деления.
Синтетический (S)2n4cПроисходит удвоение генетического материала (репликация ДНК), синтез белковых молекул, с которыми связывается ДНК, и превращение каждой хромосомы в две хроматиды.
Постсинтетический (G2)2n4cУсиливаются процессы биосинтеза, происходит деление митохондрий и хлоропластов, удваиваются центриоли.

Деление эукариотических клеток

Основой размножения и индивидуального развития организмов является деление клетки.
Эукариотические клетки имеют три способа деления:

  • амитоз (прямое деление),
  • митоз (непрямое деление),
  • мейоз (редукционное деление).

Амитоз — редкий способ деления клетки, характерный для стареющих или опухолевых клеток. При амитозе ядро делится путём перетяжки и равномерное распределение наследственного материала не обеспечивается. После амитоза клетка не способна вступать в митотическое деление.

Фазы митоза

ФазыЧисло хромосом и хроматидПроцессы
Профаза2n4cХромосомы спирализуются, центриоли (у животных клеток) расходятся к полюсам клетки, распадается ядерная оболочка, исчезают ядрышки, и начинает формироваться веретено деления.
Метафаза2n4cХромосомы, состоящие из двух хроматид, прикрепляются своими центромерами (первичными перетяжками) к нитям веретена деления. При этом все они располагаются в экваториальной плоскости. Эта структура называется метафазной пластинкой.
Анафаза2n2cЦентромеры делятся, и нити веретена деления растягивают отделившиеся друг от друга хроматиды к противоположным полюсам. Теперь разделённые хроматиды называются дочерними хромосомами.
Телофаза2n2cДочерние хромосомы достигают полюсов клетки, деспирализуются, нити веретена деления разрушаются, вокруг хромосом образуется ядерная оболочка, ядрышки восстанавливаются. Два образовавшихся ядра генетически идентичны. После этого следует цитокинез (деление цитоплазмы), в результате которого образуются две дочерние клетки. Органоиды распределяются между ними более или менее равномерно.

Биологическое значение митоза:

  • достигается генетическая стабильность;
  • увеличивается число клеток в организме;
  • происходит рост организма;
  • возможны явления регенерации и бесполого размножения у некоторых организмов.

Фазы мейоза

ФазыЧисло хромосом и хроматидПроцессы
Профаза I2n4cПроисходят процессы, аналогичные процессам профазы митоза. Кроме того, гомологичные хромосомы, представленные двумя хроматидами, сближаются и «слипаются» друг с другом. Этот процесс называется конъюгацией. При этом происходит обмен участков гомологичных хромосом — кроссинговер (перекрест хромосом), то есть обмен наследственной информацией. После конъюгации гомологичные хромосомы отделяются друг от друга.
Метафаза I2n4cПроисходят процессы, аналогичные процессам метафазы митоза.
Анафаза I1n2cВ отличие от анафазы митоза, центромеры не делятся и к полюсам клетки отходит не по одной хроматиде от каждой хромосомы, а по одной хромосоме, состоящей из двух хроматид и скреплённой общей центромерой.
Телофаза I1n2cОбразуются две клетки с гаплоидным набором.
Интерфаза1n2cКороткая. Репликации (удвоения) ДНК не происходит и, следовательно, диплоидность не восстанавливается.
Профаза II1n2cАналогичны процессам во время митоза.
Метафаза II1n2cАналогичны процессам во время митоза.
Анафаза II1n1cАналогичны процессам во время митоза.
Телофаза II1n1cАналогичны процессам во время митоза.

Биологическое значение мейоза:

  • основа полового размножения;
  • основа комбинативной изменчивости.

Деление прокариотических клеток

У прокариот митоза и мейоза нет. Бактерии размножаются бесполым путём — делением клетки при помощи перетяжек или перегородок, реже почкованием. Этим процессам предшествует удвоение кольцевой молекулы ДНК.
Кроме того, для бактерий характерен половой процесс — конъюгация.

При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток.

Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Источник: https://examer.ru/ege_po_biologii/teoriya/cikl_kletki

Мейоз – понятие, последовательность и особенности протекания процессов

Мейоз 2n4c таблица

История открытия: В 1883 г. при изучении гаметогенеза и оплодотворения у червей была выявлена закономерность: в яйцеклетках и сперматозоидах содержится в 2 раза меньше хромосом, чем в зиготе.

Детальное изучение гаметогенеза привело к открытию нового типа деления клетки, связанного с уменьшением количества хромосом в гаметах по сравнению с материнским организмом.

Определение основных закономерностей мейоза в биологии заняло около 50 лет.

Фазы кратко

Деление проходит в 2 последовательных этапа, которые принято называть мейоз I (или первое деление мейоза) и мейоз II (или второе деление мейоза). Между ними есть короткий период интеркинеза (укороченная интерфаза). Каждый этап состоит из 4 фаз, основные процессы которых представлены на следующей схеме мейоза кратко и понятно:

Во время такого деления происходят постоянные перестройки ядерных структур и цитоплазмы, конденсация и деконденсация ДНК, образование и распад белковых комплексов. Схематично представлен мейоз в такой таблице по фазам:

Название фазы Краткая характеристика
Профаза I Происходит обмен гомологичными генами между хромосомами, подготовка к делению
Метафаза I Хроматин формирует метафазную пластинку
Анафаза I Биваленты разъединяются, и гомологичные хромосомы перемещаются к разным полюсам клетки
Телофаза I Формирование 2 ядер, деление цитоплазмы
Интеркинез Подготовка ко второму делению
Профаза II В каждой клетке растворяется ядерная оболочка, образуется веретено деления
Метафаза II Хромосомы выстраиваются в метафазную пластинку
Анафаза II В каждой хромосоме разъединяются хроматиды и расходятся к разным полюсам
Телофаза II Формируются ядра, происходит разделение цитоплазмы, деление завершается

Первый этап

В мейоз вступают определённые соматические клетки после интерфазы. У каждой из них диплоидный набор хромосом. Присутствуют гомологичные пары хромосом, которые несут одинаковые гены, но в разных вариациях, например, кодирующие группы крови А и В. Каждая из гомологичных хромосом состоит из 2 хроматид, в которых гены представлены в одинаковых вариациях.

В результате мейоза образуются клетки с гаплоидным геномом. Каждая из них содержит по одной хроматиде из каждой тетрады и по одной вариации каждого гена. Производство гамет с разными генетическими признаками имеет значение для выживания популяции.

Профаза I

Первый этап самый сложный, поскольку отвечает за перераспределение генетического материала. У человека его продолжительность составляет 22,5 суток. В этой фазе происходит кроссинговер – спаренные хромосомы обмениваются короткими последовательностями ДНК, гомологичными участками. Эта фаза состоит из 5 этапов:

  1. Лептотена. Хромосомы укорачиваются, спирализируются и конденсируются, становятся видимыми в световой микроскоп. В ядре они расположены беспорядочно.
  2. Зиготена. Гомологичные хромосомы скрепляются друг с другом с помощью белковых субъединиц – происходит конъюгация. Такие структуры, состоящие из 4 хроматид, называются тетрадами или бивалентами.
  3. Пахитена. Гомологичные хромосомы тесно связываются друг с другом, в некоторых местах происходит сближение, перекрещивание (образуются хиазмы) и обмен небольшими параллельными участками.
  4. Диплотена. Генетический материал частично деконденсируется, раскручивается и используется – происходит синтез РНК и белка. Такие деконденсированные биваленты получили название хромосом типа ламповых щеток.
  5. Диакинез. Хромосомы снова конденсируются. Клетка готовится к делению: растворяется ядерная оболочка, центриоли передислоцируются к разным полюсам клетки.

Метафаза I

В профазе к делению готовится генетический материал, в метафазе – другие клеточные структуры. Ядро лишено оболочки, биваленты располагаются по экватору клетки, образуя метафазную пластинку. К каждой хромосоме прикреплено веретено деления.

Анафаза I

При участии веретена деления к полюсам клетки подтягивается по одной хромосоме из каждой тетрады. В клетке сформированы два гаплоидных генома – у каждого из двух полюсов. Но клетку продолжают считать диплоидной до разделения цитоплазмы.

Телофаза I

Цитоплазма клетки делится на 2 части. У растений – путём достраивания поперечной клеточной стенки, у животных цитоплазматическая мембрана инвагинируется и перешнуровывается. Формируются ядра. Образуется 2 клетки с неудвоенным набором хромосом, состоящих из 2 хроматид. Эти клетки имеют только по одной вариации каждого гена.

Второе деление

Второе деление происходит после короткой паузы – интеркинеза. В отличие от интерфазы, характерной для митоза, в интеркинезе не происходит удвоения генетического материала. Во второе деление вступают две клетки с гаплоидными геномами.

Профаза II

В клетках разрушаются ядерные структуры: мембраны и ядрышки. Хромосомы уплотняются, конденсируются. Экватор клетки теперь перпендикулярен экватору в первом делении. Центриоли передвигаются к противоположным полюсам, выстраивается веретено деления.

Метафаза II

Хромосомы упорядоченно размещаются в экваториальной плоскости. Метафазные пластинки на двух этапах мейоза взаимно перпендикулярны. Веретено деления связывает центриоли и хроматиды.

Анафаза II

К противоположным полюсам клетки расходится по одной дочерней хроматиде из каждой хромосомы. В делящейся клетке формируется 2 редуцированных генетических набора, но клетку считают гаплоидной до полного разделения цитоплазмы.

Телофаза II

Заканчивается редукционное деление. Заново формируются ядерные мембраны, разделяется цитоплазма. Из 2 клеток с гаплоидным геномом образуются 4 гаметы, где по-разному скомбинированы генетические признаки. При гаметогенезе у мужчин цитоплазма делится поровну между 4 сперматозоидами.

При гаметогенезе у женщин основная масса цитоплазмы отходит к яйцеклетке, большую часть трех остальных клеток занимает ядро. Эти клетки называют полярными тельцами.

Как происходит редукция генетического набора, хорошо иллюстрирует таблица с рисунками мейоза по фазам, где с – количество хроматид, а n – количество хромосом:

Фаза Геном Иллюстрация
Профаза I 4с 2n
Метафаза I 4с 2n
Анафаза I 4с 2n
Телофаза I 2с 1n
Профаза II 2с 1n
Метафаза II 2с 1n
Анафаза II 2с 1n
Телофаза II 1с 1n

Типы мейоза

В жизненном цикле эукариотических организмов мейоз может занимать разное положение. В зависимости от этого выделяют 3 типа мейоза:

  • Зигоический. У некоторых одноклеточных организмов мейоз происходит сразу после слияния двух гамет. Организм диплоиден только на стадии зиготы, а основной период жизни пребывает в гаплоидном состоянии. Такое явление характерно для дрожжей.
  • Промежуточный. У архегониальных растений (моховидных, папоротников, плаунов) есть гаплоидная фаза жизненного цикла. В результате мейоза образуются споры, из которых прорастают заростки – многоклеточные гаплоидные организмы или гаметофиты. Заростки образуют гаметы. После слияния гамет (оплодотворения) происходит образование диплоидной зиготы, дающей начало спорофиту. Таким образом, между мейозом и оплодотворением проходит целая фаза жизненного цикла.
  • Гаметическая редукция. Мейоз проходит только при образовании гамет, как у животных. Соматические клетки организма диплоидны. Гаметы живут относительно короткое время: сколько потребуется для оплодотворения.

Существуют и модификации мейоза. Например, для лягушки съедобной характерна такая особенность, как полуклональное размножение. Каждая особь имеет диплоидный набор хромосом, получая от каждого из родителей по гаплоидному набору.

Перед мейозом один из родительских наборов удаляется, а второй – удваивается. Гаметы получают набор хромосом, полностью идентичный таковому одного из родителей особи.

В профазу 1 мейоза рекомбинации не происходит, поскольку перед вступлением в деление клетки несут только по одной вариации каждого гена.

В процессе мейоза происходит образование гамет с редуцированными геномами и разными генетическими наборами. У диплоидных организмов образуются гаметы с гаплоидным набором хромосом.

Это необходимо для того, чтобы после оплодотворения у зиготы снова восстановился диплоидный генетический набор. Кроссинговер обеспечивает формирование гамет с разнообразными генотипами, что способствует выживанию популяции.

Источник: https://nauka.club/biologiya/meyoz.html

Жизненный цикл клетки: интерфаза и митоз

Мейоз 2n4c таблица

Жизненный цикл клетки – это время существованя клетки с момента первого деления до следующего деления, или до последнего деления (смерти клетки). 

Клетки делятся несколькими способами: 

  • Амитоз. Деление клетки осуществляется в интерфазе. В данном случае хромосомы не конденсируются, не образуется веретено деления, и ядерная оболочка не распадается. При амитозе ядро вытягивается и делится на две части путём перетяжки. Таким образом делятся, например, клетки злокачественных опухолей. 
  • Митоз. Непрямое деление, в результате которого, из одной клетки образуются две идентичные ей дочерние. Так делятся соматические клетки.
  • Мейоз. Этот способ деления осуществляется, когда происходит образование половых гамет.

Митоз – деление соматических клеток

Митоз – это непрерывный процесс деления клеток, который подразделяется на 4 последовательных стадий: профаза, метафаза, анафаза и телофаза.

  1. Профаза. генетического материала: 2n4c. В этой фазе происходит конденсация хромосом в ядре, хроматиды спирализуются и образуется ахроматиновое веретено (веретено деления). Распадается ядерная оболочка. Ядрышки исчезают (но это необязательное условие, бывают исключения). Центриоли клеточного центра начинают расходиться к полюсам клетки и образуют центры организации микротрубочек. У высших растений нет центриолей, однако микротрубочки образуются. 
  2. Метафаза. Набор хромосом: 2n4c. Характеризуется расположением сильно сконденсированных хромосом на экваторе клетки, образованием метафазной пластинки в области центромеры. Ядерная оболочка полностью исчезла. Ахроматиновое веретено полностью сформировано. Хромосомы удерживаются благодаря силе натяжения микротрубочек полюсов. Количество хромосом в эту фазу легко подсчитать, они уплотнены и имеют определённую форму. 
  3. Анафаза. генетического материала: 4n4c. Самая короткая по продолжительности фаза, она начинается в момент, когда центромеры хромосом делятся на две части. Здесь происходит разделение хроматид с последующим их движением к своим полюсам и прикрепление к укороченным микротрубочкам. Расхождение происходит вследствие укорочения микротрубочек, образующих нити веретена деления. 
  4. Телофаза. генетического материала: 2n2c. В этой фазе движение хромосом заканчивается, и они концентрируются на полюсах клетки и раскручиваются в тонкие нити. Формируется ядрышко, путём слияния мембранных пузырьков образуется ядерная оболочка, исчезают нити веретена деления. Образуются перетяжка, с помощью которой клетка делится на две части. 

Рис. 1 Фазы метоза

Медик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: