Мера звука

Содержание
  1. Интересные факты о звуке
  2. Что такое звук
  3. Частота дискретизации звука
  4. Смертельный уровень звука
  5. Скорость звука в км в час и метры в секунду
  6. Мощность звука
  7. Высота и нота
  8. Свойства и качество звука
  9. Кодирование звука
  10. Форматы звука
  11. Что такое звук и какими характеристиками обладают звуковые волны?
  12. Какая природа у звука
  13. Основные характеристики звуковой волны
  14. Частота
  15. Амплитуда
  16. Фаза звуковой волны
  17. Что такое децибел?
  18. Звуковое давление и его уровни (spl)
  19. Звуковое давление
  20. p = RTp
  21. Импеданс
  22. Z = p/v
  23. Энергетические параметры
  24. Уровни звукового давления (анг.SPL, sound pressure level)
  25. Уровень интенсивности звука
  26. Мощность, напряжение, ток
  27. Звук в цифрах
  28. Высота
  29. Громкость
  30. Чувствительность
  31. Мощность
  32. Амплитудно-частотная характеристика (АЧХ )
  33. Нелинейные искажения
  34. Акустические системы: поговорим о звуке (часть 1)
  35. Что такое частота звука?
  36. Не все частоты одинаково громкие
  37. Как мы понимаем, откуда пришел звук
  38. Почему одни звуки красивые, а другие нет?
  39. Нота — высота звука и его частота — зависит от специальности
  40. Громкость, звуковое давление — пределы и ориентиры
  41. Поведение звука

Интересные факты о звуке

Мера звука

В статье вы узнаете, что такое звук, каков его смертельный уровень громкости, а также скорость в воздухе и других средах. Также поговорим про частоту, кодирование и качество звука.

Еще рассмотрим дискретизацию, форматы и мощность звука. Но сначала дадим определение музыки, как упорядоченному звуку — противоположность неупорядоченному хаотическому, который мы воспринимаем, как шум.

Что такое звук

Даже при разговоре вы слышите своего собеседника потому, что он воздействует на воздух. Также, когда вы играете на музыкальном инструменте, бьете ли вы по барабану или дергаете струну, вы производите этим колебания определенной частоты, которой в окружающем воздухе производит звуковые волны.

Звуковые волны бывают упорядоченные и хаотические. Когда они упорядоченные и периодические (повторяются через какой-то промежуток времени), мы слышим определенную частоту или высоту звука.

[attention type=yellow]

То есть мы можем определить частоту, как количество повторения события в заданный промежуток времени. Таким образом, когда звуковые волны хаотичны, мы воспринимаем их как шум.

[/attention]

Но когда волны упорядочены и периодически повторяются, то мы можем измерить их количеством повторяющихся циклов в секунду.

Частота дискретизации звука

Частота дискретизации звука — это количество измерений уровня сигнала за 1 секунду. Герц (Гц) или Hertz (Hz) — это научная единица измерения, определяющая количество повторений какого-то события в секунду. Эту единицу мы будем использовать!

Частота дискретизации звука

Наверное, вы очень часто видели такую аббревиатуру — Гц или Hz. Например, в плагинах эквалайзеров. В них единицами измерения являются герцы и килогерцы (то есть 1000 Гц).

Давайте я открою плагин эквалайзера и покажу вам как это выглядит. Вам, наверное, знакомы эти цифры.

Частоты звука

С помощью эквалайзера вы можете ослаблять или усиливать определенные частоты в пределах слышимого человеком диапазона.

Небольшой пример!

Здесь у меня запись звуковой волны, которая была сгенерирована на частоте 1000 Гц (или 1 кГц). Если увеличить масштаб и посмотреть на ее форму, то мы увидим, что она правильная и повторяющиеся (периодическая).

Повторяющиеся (периодическая) звуковая волна

В одной секунде здесь происходит тысяча повторяющихся циклов. Для сравнения, давайте посмотрим на звуковую волну, которую мы воспринимаем как шум.

Неупорядоченный звук

Тут нет какой-то конкретной повторяющейся частоты. Также нет определенного тона или высоты. Звуковая волна не упорядочена. Если мы взглянем на форму этой волны, то увидим, что в ней нет ничего повторяющегося или периодического.

Давайте перейдем в более насыщенную часть волны. Мы увеличиваем масштаб и видим, что она не постоянная.

Неупорядоченная волна при масштабировании

Из-за отсутствия цикличности мы не в состоянии услышать какую-то определенную частоту в этой волне. Поэтому мы воспринимаем ее как шум.

Смертельный уровень звука

Хочу немного упомянуть про смертельный уровень звука для человека. Он берет свое начало от 180 дБ и выше.

Стоит сразу сказать, что по нормативным нормам, безопасным уровнем громкости шума считается не более 55 дБ (децибел) днем и 40 дБ ночью. Даже при длительном воздействии на слух, этот уровень не нанесет вреда.

Уровни громкости звука(дБ)ОпределениеИсточник
0Совсем не лышно
5Почти не слышно
10Почти не слышноТихий шелест листьев
15 Еле слышно Шелест листвы
20 — 25Едва слышно Шепот человека на расстоянии 1 метр
30 Тихо Тиканье настенных часов (допустимый максимум по нормам для жилых помещений ночью с 23 до 7 часов)
35Довольно слышно Приглушенный разговор
40 Довольно слышно Обычная речь (норма для жилых помещений днем с 7 до 23 часов)
45Довольно слышноРазговор
 50Отчетливо слышно Пишущая машинка
55 Отчетливо слышно Разговор (европейская норма для офисных помещений класса А)
 60 Шумно(норма для контор)
65ШумноГромкий разговор (1м)
70ШумноГромкие разговоры (1м)
75ШумноКрик и смех (1м)
80Очень шумноКрик, мотоцикл с глушителем
85Очень шумноГромкий крик, мотоцикл с глушителем
90Очень шумноГромкие крики, грузовой железнодорожный вагон (7м)
95Очень шумноВагон метро (в 7 метрах снаружи или внутри вагона)
100Крайне шумноОркестр, гром (по европейским нормам, это максимально допустимое звуковое давление для наушников)
105Крайне шумноВ старых самолетах
110Крайне шумноВертолет
115Крайне шумноПескоструйный аппарат (1м)
120-125Почти невыносимоОтбойный молоток
130Болевой порогСамолет на старте
135 — 140КонтузияВзлетающий реактивный самолет
145КонтузияСтарт ракеты
150 — 155Контузия, травмы
160Шок, травмаУдарная волна от сверхзвукового самолета
165+Разрыв барабанных перепонок и легких
180+Смерть

Скорость звука в км в час и метры в секунду

Скорость звука — это скорость распространения волн в среде. Ниже даю таблицу скоростей распространения в различных средах.

0 ºСм/скм/ч
Воздух3311191.6
Водород12844622.4
Азот3341202.4
Аммиак4151494.0
Ацетилен3271177.2
Гелий9653474.0
Железо595021420.0
Золото324011664.0
Кислород3161137.6
Литий600021600.0
Метан4301548.0
Угарный газ3381216.8
Неон4351566.0
Ртуть13834978.0
Стекло480017280.0
Углекислый газ259932.4
Хлор206741.6

Скорость звука в воздухе намного меньше чем в твердых средах. А скорость звука в воде намного выше, чем в воздухе. Составляет она 1430 м/с. В итоге, распространение идет быстрее и слышимость намного дальше.

Мощность звука

Мощность звука — это энергия, которая передается звуковой волной через рассматриваемую поверхность за единицу времени. Измеряется в (Вт). Бывает мгновенное значение и среднее (за период времени).

Давайте продолжим работать с определениями из раздела теория музыки!

Высота и нота

Высота — это музыкальный термин, который обозначает почти тоже самое, что и частота. Исключение составляет то, что она не имеет единицы измерения. Вместо того чтобы определять звук количеством циклов в секунду в диапазоне 20 — 20 000 Гц, мы обозначаем определенные значения частот латинскими буквами.

Музыкальные инструменты производят периодические звуковые волны правильной формы, которые мы называем тонами или нотами.

Давайте посмотрим на звуковую волну в 1 кГц. Сейчас я увеличу масштаб, и вы увидите каково расстояние между циклами.

Звуковая волна в 1 кГц

Теперь давайте взглянем на волну в 500 Гц. Тут частота в 2 раза меньше и расстояние между циклами больше.

Звуковая волна в 500 Гц

Теперь возьмем волну в 80 Гц. Тут будет еще шире и высота намного ниже.

Звук в 80 Гц

Мы видим взаимосвязь между высотой звука и формой его волны.

Давайте я покажу вам еще один пример!

Ниже волна в 440 Гц. Это стандарт в мире музыке для настройки инструментов. Соответствует он ноте ля.

Чистая звуковая волна в 440 Гц

Мы слышим только основной тон (чистую звуковую волну). Если увеличить масштаб, то увидим, что она периодическая.

А теперь давайте посмотрим на волну той же частоты, но сыгранную на пианино.

Периодический звук пианино

Посмотрите, она тоже периодическая. Но в ней есть небольшие дополнения и нюансы. Все они в совокупности и дают нам понятие о том, как звучит пианино. Но помимо этого, обертона обуславливают и тот факт, что одни ноты будут иметь большее сродство к данной ноте чем другие.

[attention type=red]

Для примера можно сыграть туже ноту, но на октаву выше. По звучанию будет совсем иначе. Однако она будет родственной предыдущей ноте. То есть это та же нота, только сыгранная на октаву выше.

[/attention]

Такая родственная связь двух нот в разных октавах обусловлена наличием обертонов. Они постоянно присутствуют и определяют насколько близко или отдаленно определенные ноты связаны друг с другом.

Традиционной нотации высота ноты обуславливает ее расположение на нотном стане или нотоносце.

Сейчас я покажу вам с помощью нотного редактора. Здесь мы видим, как записывается нота ля.

Помимо традиционного представления нот на нотном стане, в современных музыкальных редакторах вы можете встретить другую систему записи и редактирования нот. Чаще всего она представляет собой пианинную сетку или таблицу.

Слева мы видим клавиатуру пианино. А справа, соответствующие каждой ноте, прямоугольники.

В принципе, такая система не отличается от классической выше. Просто способ представления высоты нот реализован по-другому. Точно также, когда мы говорим 440 Гц или ля, мы имеем одну и ту же высоту или частоту звука.

Свойства и качество звука

Свойства звука — это его физические особенности, которые можно измерить. Сюда входит частота колебаний, их продолжительность и амплитуда. Еще относится и состав колебаний. То есть сочетание простейших колебаний в сложное.

А вот отражение физических свойств в наших ощущениях (то, что мы чувствуем) называется качеством звука. Сюда относится высота и длительность звука. А также громкость и тембр.

Высота звука зависит от частоты колебаний. Чем чаще колебания, тем выше звук. Чем реже колебания, тем ниже звук.

Длительность зависит от продолжительности колебаний.

Громкость зависит от амплитуды колебаний. Например, после удара по гитарной струне, можно увидеть, что она начнет колебаться в разные стороны. Чем шире эти колебания, тем громче звук. Ширина этого размаха называется амплитудой колебаний.

[attention type=green]

Если сильно ударим по струне, то амплитуда будет большой. Соответственно, мы услышим громкий звук. Если легонько тронем пальцем струну, то амплитуда будет маленькой. В таком случае, звук будет тихим.

[/attention]

Тембр — это обертоновая окраска звука. Она позволяет нам различать звуки одной высоты, но исполненные разными инструментами или голосами.

Кодирование звука

Кодирование звука — это процесс преобразования колебаний воздуха в колебания электрического тока с последующей дискретизацией аналогового сигнала. То есть такое кодирование необходимо нам для дальнейшей работы со звуком уже на компьютере.

А поскольку мы на ПК не можем работать с аналоговым сигналом, в таком случае мы должны преобразовать его в цифровой. Так мы можем к примеру, с помощью специальных компьютерных программ для создания звука работать с самим сигналом.

Для преобразования сигнала используются специальные аналого-цифровые преобразователи (АЦП). В компьютере это обычно звуковые карты.

Форматы звука

Форматы звука предназначены для представления аудио данных с последующим хранением на электронных носителях. Есть три основные группы:

  1. формат звука со сжатием и потерями качества (MP3, Ogg)
  2. со сжатием без потерь (APE, Flac)
  3. без сжатия (WAW, AIFF)

На этом все!

Теперь вы знаете, что такое звук и каковы его характеристики. Также мы дополнительно рассмотрели такие понятия, как частота, высота и нота. А также как они соотносятся друг с другом.

[ratings]

Сказать спасибо кнопками ниже:

Источник: https://muzrock.com/teoriya-muzyki/chto-takoe-zvuk

Что такое звук и какими характеристиками обладают звуковые волны?

Мера звука

Раскаты грома, музыка, шум прибоя, человеческая речь и все остальное, что мы слышим – это звук. А что такое “звук”?

Источник изображения: pixabay.com

В действительности все, что мы привыкли считаем звуком – это всего лишь одна из разновидностей колебаний (воздуха), которые могут воспринимать наш мозг и органы слуха.

Какая природа у звука

Все звуки, распространяемые в воздухе, представляют собой вибрации звуковой волны. Она возникает посредством колебания объекта и расходится от её источника во всех направлениях.

Колеблющийся объект сжимает молекулы в окружающей среде, а затем создаёт разреженную атмосферу, заставляя молекулы отталкиваться друг от друга всё дальше и дальше.

Таким образом, изменения в давлении воздуха распространяются от объекта, сами молекулы остаются в неизменной для себя позиции.

Воздействие звуковых волн на барабанную перепонку. Источник изображения:prd.go.

th

По мере того, как звуковая волна распространяется в пространстве, она отражается от объектов, встречающихся на её пути, создавая изменения в окружающем воздухе.

Когда эти изменения, достигая вашего уха, воздействуют на барабанную перепонку, нервные окончания подают сигнал в мозг, и вы воспринимаете эти колебания как звук.

Основные характеристики звуковой волны

Самой простой формой звуковой волны является синусоида. Синусоидные волны в чистом виде редко встречаются в природе, однако именно с них следует начинать изучение физики звука, так как любые звуки можно разложить на комбинацию синусоидных волн.

Синусоида чётко демонстрирует три основных физических критерия звука – частоту, амплитуду и фазу.

Частота

Чем реже частота колебаний, тем звук ниже, Источник изображения:ReasonGuide.Ru

Частота – это величина, характеризующая количество колебаний в секунду. Она измеряется в количестве периодов колебания либо в герцах (ГЦ).

Человеческое ухо может воспринимать звук в диапазоне от 20 Гц (низкочастотные) и до 20 КГц (высокочастотные).

Звуки, находящиеся выше данного диапазона называется ультразвуком, а ниже – инфразвуком, и человеческими органами слуха не воспринимаются.

Амплитуда

Чем больше амплитуда звуковой волны, тем громче звук.

Понятие амплитуды (или интенсивности) звуковой волны имеет отношение к силе звука, которую человеческие органы слуха воспринимают как объём или громкость звука.

Люди могут воспринимать достаточно широкий спектр громкости звука: от капающего крана в тихой квартире, и до музыки, звучащей на концерте.

Для измерения громкости используются фонометры (показатели в децибелах), в которых используется логарифмическая шкала чтобы сделать измерения более удобными.

Фаза звуковой волны

Фазы звуковой волны. Источник изображения: Muz-Flame.ru

Используется для того, чтобы описать свойства двух звуковых волн. Если две волны имеют одинаковую амплитуду и частотность, то говорят, что две звуковые волны находятся в фазе.

Фаза измеряется в диапазоне от 0 до 360, где 0 – это значение, показывающее, что две звуковые волны синхронны (в фазе), а 180 – значение, означающее противоположность волн друг к другу (находятся в противофазе). Когда две звуковые волны находятся в фазе, то два звука накладываются и сигналы усиливают друг друга.

При совмещении двух сигналов, не совпадающих по амплитуде, из-за разницы давления идёт подавление сигналов, что приводит к нулевому результату, то есть звук исчезает. Этот феномен известен как “подавление фазы”.

При совмещении двух одинаковых аудио сигналов – подавление фазы может стать серьёзной проблемой, так же огромной неприятностью является совмещение оригинальной звуковой волны с волной, отражённой от поверхностей в акустической комнате. Например, когда совмещают левый и правый каналы стерео микшера, чтобы получить гармоничную запись, сигнал может страдать от подавления фаз.

Что такое децибел?

В децибелах измеряется уровень звукового давления или электрического напряжения. Это такая единица, которая показывает коэффициент отношения двух разных величин друг к другу. Бел (названный в честь американского ученого Александра Белла) является десятичным логарифмом, отражающим соотношение двух разных сигналов друг к другу.

Это означает, что для каждого последующего бела в шкале, принимаемый сигнал в десять раз мощнее. Например, звуковое давление громкого звука в миллиарды раз выше, чем у тихого. Для того чтобы отображать такие большие величины, стали использовать относительную величину децибел (дБ) – при этом 1.000.000.000 – это 109, или просто 9.

Принятие физиками акустиками данной величины позволило сделать работу с огромными числами удобнее.

Шкала громкости различных звуков. Источник изображения: Nauet.

ru

На практике получается так, что бел является слишком большой единицей для измерения уровня звука, поэтому вместо него стали использовать децибел, что составляет одну десятую от бела.

Нельзя сказать, что применение децибелов вместо белов – это как использование, скажем, сантиметров вместо метров для обозначения размера обуви, белы и децибелы — относительные величины.

Из выше сказанного понятно, что уровень звука принято измерять в децибелах. Некоторые эталоны уровня звука используются в акустике на протяжении многих лет, начиная со времён изобретения телефона, и по сей день.

Большинство этих эталонов сложно применить относительно современного оборудования, они используются только для устаревших единиц техники.

[attention type=yellow]

На сегодняшний день на оборудовании в студиях звукозаписи и вещания используется такая единица, как дБu (децибел относительно уровня 0,775 В), а в бытовой аппаратуре – дБВ (децибел, отсчитываемый относительно уровня 1 В). В цифровой аудио аппаратуре для измерения мощности звука применяется дБFS (децибел полной шкалы).

[/attention]

дБм – “м” обозначает милливатты (мВт), данная единица измерения используется для обозначения электрической мощности. Следует отличать мощность от электрического напряжения, хотя эти два понятия тесно связаны друг с другом. Единицу измерения дБм начали использовать ещё на заре внедрения телефонных коммуникаций, на сегодняшний день её тоже используют в профессиональной аппаратуре.

дБu — в данном случае измеряется напряжение (вместо мощности) относительно эталонного нулевого уровня, за эталонный уровень принято считать 0,75 вольт.

В работе с современной профессиональной аудио аппаратуре дБu заменён на дБм.

В качестве единицы измерения в сфере звукотехники было удобнее использовать дБu раньше, когда для оценки уровня сигнала было важнее считать электрическую мощность, а не его напряжение.

дБВ – в основе данной единицы измерения так же лежит эталонный нулевой уровень (как и в случае с дБu), однако за эталонный уровень принимают 1 В, что является более удобным, чем цифра 0,775 В. Данная единица измерения звука часто используется для бытовой и полу профессиональной аудио аппаратуры.

дБFS – данная оценка уровня сигнала широко используется в цифровой звукотехнике и сильно отличается от указанных выше единиц измерения.

FS (full scale) – полная шкала, которая используется из-за того, что, в отличие от аналогового звукового сигнала, которое имеет оптимальное напряжение, весь диапазон цифровых значений одинаково приемлем при работе с цифровым сигналом.

0 дБFS – это максимально возможный уровень цифрового звукового сигнала, который можно записать без искажения. У аналоговых стандартов измерения таких, как дБu и дБВ, после уровня 0 дБFS нет запаса по динамическому диапазону.

Если Вам понравилась статья ,поставьте лайкиподпишитесь на каналНАУЧПОП.Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник: https://zen.yandex.ru/media/popsci/chto-takoe-zvuk-i-kakimi-harakteristikami-obladaiut-zvukovye-volny-5bfee53b9f25000ae1f79429

Звуковое давление и его уровни (spl)

Мера звука

В настоящее статье поговорим о том, что такое звуковое давление, рассмотрим понятие (импеданс) — удельное акустическое сопротивление среды. Также поговорим об уровнях звукового давления и интенсивности звука.

Чтобы лучше понимать о чём сегодня пойдёт речь, советую прочитать предыдущую статью по этой теме (звуковые волны, виды, длина волны и скорость звука).

Звуковое давление

Звуковая волна, как мы уже рассматривали в прошлой статье, распространяется в среде в виде волн сжатия и разряжения плотности.

В газах (в том числе и воздухе) плотность и давление связаны между собой:

p = RTp

T — температура среды, R — газовая постоянная среды, p — плотность.

А поскольку у волны имеются области сжатия и разряжения, то в первой области давление будут выше статического атмосферного. А в случае разряжения – ниже.

Вот как это выглядит:

Разность между мгновенным значением давления в данной точке среды и атмосферным давлением называется звуковым давлением.

Звуковое давление измеряется в паскалях (Па): 1 Па = 1 Н/м².

Наша слуховая система может определять очень большой диапазон разностей между мгновенным значением звукового давления и атмосферным.

На рисунке ниже представлено, различное звуковое давление от звуковых источников в децибелах (про децибелы подробнее читай далее):

Импеданс

Рассматривая звук, в прошлой статье (читать) мы выяснили, что звуковая волна зависит от частоты и амплитуды звукового давления. Если  тело оказывает большое сопротивление приложенному звуковому давлению, то частицы приобретают малую скорость.

Поэтому импеданс – это удельное акустическое сопротивление среды. Представляет из себя отношение звукового давления к скорости колебаний частиц среды:

Z = p/v

Измеряется в (Па · с)/м или кг/(с · м²).

Удельное акустическое сопротивление для воздуха составляет (при температуре 20 С°) 413 кг/(с · м²). В металле, к примеру, оно составляет 47,7 × 10 кг/(с · м²). Так как в воздухе импеданс достаточно мал, то и излучаемая полезная энергия также мала.

Если рассматривать КПД (коэффициент полезного действия) музыкальных инструментов, ого аппарата, громкоговорителей и т. п., то оно в воздухе находится в пределах 0,2-1%.

Энергетические параметры

Звуковая волна переносит энергию механических колебаний, значит она имеет энергетические параметры.

Среди которых: акустическая энергия P (Дж); мощность W – энергия, переносимая в единицу времени (Вт); интенсивность I – количество энергии, проходящее в единицу времени через единицу площади, перпендикулярной к направлению распространения волны (Вт/м²); плотность  – количество звуковой энергии в единице объёма (Дж/м²).

Уровни звукового давления (анг. SPL, sound pressure level)

Восприятие громкости человеком происходит не по линейному закону, пропорционально амплитуде колебаний, а по логарифмическому. Поэтому для определения параметров звука применяют логарифмические шкалы.

Человек различает огромный диапазон изменения звукового давления от тихого 2 × 10 ⁻⁵ Па до очень громкого 20 Па. Разница составляет 10⁶.

Использовать такую школу очень неудобно. Поэтому в измерительных приборах пользуются логарифмическими единицами – децибелами (дБ). Эта единица происходит от другой – бел, который равен десятикратному изменению интенсивности звука. Однако бел – единица крупная и неудобная для измерений. Поэтому применяется её десятая часть  – децибел.

Уровень звукового давления определяется как:

L = 20 lg p/p₀

Например, если звуковое давление p = 2 Па, то уровень звукового давления равен: L = 20 lg (2 Па/(2 × 10 ⁻⁵) Па) = 20 lg (1 × 10⁺⁵) = 20  × 5 = 100 дБ.

Один децибел – примерно та наименьшая разница в громкости, которую человеческое ухо может почувствовать.

Полезно запомнить следующее. Изменение громкости в 3 дБ равно отношению 2:1. Поэтому если мы берем два одинаковых источника звука, т. е. удваиваем мощность, то громкость увеличиться на 3 дБ.  Например, если к голосу присоединяется ещё один, равный по громкости, то уровень звука увеличится на 3 дБ. Если нужно ещё увеличить на 3 дБ, потребуется вдвое увеличить имеющийся состав.

Также можно обратиться к следующей таблице (в ней показано на сколько дБ нужно убавить, чтобы получить звучание в 2 раза тише, в 3 и т. д.):

1%10%25%33%50%100%
1/100(в 100 раз тише)1/10(в 10 раз тише)1/4(в 4 раза тише)1/3(в 3 раза тише)1/2(в 2 раза тише)1/1
-40дБ-20дБ-12 дБ-10 дБ— 6 дБ0 дБ

Для определения суммарного уровня давления нескольких инструментов их никогда не складывают. Вначале необходимо рассчитать значение звукового давления каждого инструмента. Допустим играют две скрипки. Одна с уровнем 80 дБ, другая 86 дБ. У первой звуковое давление равно  — 0,2 Па, второй — 0,4 Па.

Рассчитывается так: L = 20 lg p/p₀, значит 80 дБ = 20 lg p / (2 × 10 ⁻⁵),  далее lg p / (2 × 10 ⁻⁵) = 4.  Следовательно 10⁴ = p / (2 × 10 ⁻⁵), отсюда значение звукового давления будет p = 0,2 Па.

После этого определяется суммарное звуковое давление

В нашем случае суммарное давление равно p = 0, 447 Па. Затем определяется суммарный уровень звукового давления. Который равен 86,98 дБ.

Уровень интенсивности звука

Уровень интенсивности звука также измеряется в децибелах по формуле:

L₁ = 10 lg I/I₀

I₀ – нулевой уровень, равный 10⁻¹² Вт/м².

Мощность, напряжение, ток

Перечисленные электрические характеристики также часто приводятся в децибелах и имеют свои специальные обозначения. Приведём несколько примеров:

L dBm = 10 lg WВт/ 1мВт    –    уровень мощности отнесённый к 1 мВт

L dBv = 20 lg UB/1B    – уровень напряжения, отнесённый к 1 В (Америка)

L dBv = 20 lg UB/0,775 B   – уровень напряжения, отнесённый к 0,775 В (Европа)

Спасибо, что читаете New Style Sound (подписаться на новости)

Tweet Подписаться Share Share Share Share Share

Источник: https://nssound.ru/o-zvuke-i-zvukovykh-signalakh/zvukovoe-davlenie-i-ego-urovni-spl/

Звук в цифрах

Мера звука

При покупке звукового оборудования, будь то наушники, микрофон, звуковая карта и т.д., вы выбираете его по тем или иным характеристикам, а кто-то просто по отзывам и совету продавца, потому что не особо разбирается в тех цифрах, что представлены в описании товара.

Давайте же станем покупателями, которые делают свой выбор осознанно, покупая товар за его характеристики, а не репутацию.

Поэтому данная статья будет посвящена звуку и тем его характеристикам, которые можно измерить и выразить в цифрах, на примерах устройств звукоусиления (наушников и акустических систем).

Вспомним школьный курс физики, который учил нас, что звук – это механическая волна, т.е. колебания, распространяющиеся в среде, и курс биологии, рассказывающий, что эти колебания воспринимаются нашим ухом и преобразуются в нервные импульсы, посылаемые в мозг и воспринимаемые как конкретные звуки.

Звуковые волны – это волны сжатия и разряжения воздушной среды, в которой звук распространяется. Основными характеристиками звука являются его высота, определяемая частотой, и громкость, определяемая амплитудой.

Если говорить о музыкальном звуке, то стоит добавить две характеристики: длительность и тембр.

Высота

Высота звука, как было сказано выше, определяется частотой колебаний. Причем зависимость эта не линейная, а представляет собой геометрическую прогрессию. Если говорить об инструменте, то частота зависит от толщины, длины и упругости струны, например.

Человеческое ухо способно воспринимать звуки в частотном диапазоне 16 – 20000 Гц, хотя верхняя граница незначительно изменяется с возрастом. Низкие звуки хорошо воспринимаются в любом возрасте. В музыке используется диапазон наиболее четкого восприятия звука: 16 – 4500 Гц.

Если говорить о наушниках, то чаще всего в их характеристиках можно встретить следующие цифры: 20 – 20000 Гц, которые и означают диапазон воспроизводимых частот. Эти цифры не несут практически никакой информации о звуке наушников и не позволяет сравнивать разные модели.

[attention type=red]

Строго говоря, нет никаких стандартов по поводу измерения и указания частотного диапазона наушников, поэтому производитель может и не указывать этот параметр.

[/attention]

Но некоторые покупатели являются жертвами маркетинга, и, когда видят, что указан расширенный диапазон, например, 15-21000 Гц, бегут приобретать модель с уникальными характеристиками.

Хотя нижние и верхние границы они просто не услышат… Хотя границы частотного диапазона говорят о том, что окончательные спады АЧХ начинаются только у этих дальних границ, а не раньше. Поэтому заниженная нижняя граница позволяет надеяться, что нижний бас в данной модели хотя бы присутствует.

Громкость

Громкость звука – это отражение в восприятии силы звука. Громкость определяет уровень мощности, которая зависит от амплитуды звукового сигнала. Ухо воспринимает не мощность, а звуковое давление на барабанную перепонку, то есть звуковую энергию, приходящуюся на единицу площади, получаемую от источника, находящегося на расстоянии 1 метр.

Громкость выражается в децибелах (дБ). Минимальная громкость, которую слышит человек, называется порог слышимости. Громкость, при которой человек испытывает боль, называется болевым порогом. Интервал между порогом слышимости и болевым порогом Александр Бел поделили на 13 ступеней, создав, таким образом, шкалу звуковой мощности.

Что же такое 0 дБ? Это давление, оказываемое на ухо полностью неподвижной средой, что практически не достижимо. А вот 10 дБ соответствует средней громкости дыхания человека, 20 дБ – тиканью часов.

Человеческое ухо вообще вещь довольно интересная, и воспринимает различные звуки по-разному. Например, звуки голоса и взлетающего самолета различаются в миллион раз по силе создаваемого давления.

Таким образом, небольшое отличие по громкости в дБ (например рок-концерт 120 дБ и смертельные 160дБ) отличается по силе звукового давления в тысячи раз.

Т.е. увеличение на сколько-то дБ приводит к увеличению восприятия громкости в несколько раз. Попробуем объяснить на конкретных цифрах:      

  • Добавить 10 дБ = увеличить громкость в 2 раза.
  • Добавить 20 дБ = увеличить громкость в 4 раза.
  • Добавить 40 дБ = увеличить громкость в 16 раз.
  • Добавить 60 дБ = увеличить громкость в 1 000 000 раз и так далее

Еще немного цифр.

  • Увеличиваем расстояние до источника звука в 2 раза = минус 6 дБ.
  • Увеличиваем расстояние до источника звука в 10 раз = минус 20 дБ.

Вы можете подумать, что это какая-то странная и непонятная зависимость. И будете правы, ибо она не линейная, а логарифмическая, то есть добавление единицы в несколько раз увеличивает результат.

Следует также отметить, что громкость — это характеристика субъективная, зависящая от частоты. Что интересно, человек воспринимает одинаковую громкость на разных частотах как звуки разной громкости.

Чувствительность

Чувствительность – параметр, который часто указывается производителями акустических систем.

Для АС чувствительность – это интенсивность звукового давления, измеренная на расстоянии 1 м от источника звука частотой 1000 Гц и мощностью 1 Вт.

Чувствительность – величина относительная и измеряется в децибелах относительно порога слышимости. Можно встретить такое обозначение – уровень характеристической чувствительности или SPL, указываемый в дБ/Вт*м.

Для характеристики наушников чувствительность указывается по отношению к мощности (дБ/мВт), что не совсем удобно. Гораздо удобнее выражать чувствительность относительно напряжения (дБ/В), тогда её можно брать прямо из АЧХ на частоте 1 кГц.

[attention type=green]

Если представлять чувствительность относительно напряжения, то можно оценить зависимость громкости звука от подаваемого напряжения (а изменение громкости источника – это и есть изменение напряжения).

[/attention]

Сочетание высокой чувствительности и низкого сопротивления обеспечивают более высокую громкость, но, при этом вероятно появление лишних шумов в наушниках, которые будут слышны только тогда, когда не играет музыка, а некоторых это раздражает.

Мощность

Если снова обратиться к курсу физики, то мощность – это энергия, выделяемая в единицу времени. Поэтому более мощный звук не означает более громкий. Мощность – это скорее про механическую надежность акустической системы, а не про ее громкость.

Поясним: мощность, указываемая производителем в паспорте динамика или системы, гарантирует, что при подаче сигнала данной мощности динамическая головка не выйдет из строя.

То есть мощность – это не параметр звука, а технический параметр, который влияет на громкость.

Мощность акустической системы можно измерит разными способами и в разных условиях. Но наиболее важной характеристикой, указываемой производителем в описании акустических систем является значение мощности, указанной в Вт (RMS). Но стоит помнить о том, что громкость звука характеризуется всё же уровнем звукового давления, поэтому судить о громкости системы по показателю мощности не стоит.

Амплитудно-частотная характеристика (АЧХ )

Что такое АЧХ? Это график, который показывает зависимость разницы амплитуд колебаний выходного и входного сигналов (вертикальная ось) от частоты (ось горизонтальная).

За 0 дБ принимают амплитуду колебаний на частоте 1 кГц. Идеальная АЧХ – это прямая линия, которую встретить нереально, к сожалению.

Поэтому чем более неравномерна кривая, тем больше искажений частот стоит ожидать от звука.

Что же означают цифры в описании неравномерности АЧХ устройства? Давайте разберем на примере. Если указано, например, 50 Гц – 16 кГц (±3 дБ), то это следует читать так: акустическая система на данном диапазоне имеет достоверное звучание, а на частотах, не попадающих в указанный диапазон, неравномерность резко увеличивается и АЧХ имеет «завал» (резкий спад характеристики).

Неравномерность АЧХ может выражаться в подъемах и спадах кривой. Так вот уменьшение уровня низких частот ведет к потере насыщенного звучания басов, а подъем вызывает гул. Если говорить о высоких частотах, при их завалах звук получается невнятным, а на подъемах будет раздражать свистом и шипящими звуками.

По отношению к наушникам, АЧХ показывает их тональный баланс. Именно по АЧХ и стоит выбирать наушники для определенных целей (басы, вокал, классика и т.д.). Вид АЧХ наушников зависит от их импеданса и полного сопротивления усилителя.

Нелинейные искажения

Так как акустические системы представляют собой сложное устройство, в котором происходят усиления сигнала, то на выходе звук обязательно имеет нелинейные искажения, одними из которых являются искажения гармонические, придающие звучанию новый тембр и ведущие к звуковым потерям.

Измеряют гармонические искажения с помощью коэффициента гармоник (КГ), который измеряется в процентах или в децибелах. Соответственно чем выше коэффициент гармоник, тем хуже звучание. Числовое значение КГ акустической системы зависит от мощности входящего сигнала.

Итак, рассмотрев основные характеристики звука, можно сказать, что правило «Чем больше цифры – тем лучше», работает далеко не всегда.

[attention type=yellow]

Поэтому либо осваивайте теорию и вперед со знанием дела выбирать нужное вам устройство, либо не вникайте и продолжайте доверять советам опытных продавцов-консультантов.

[/attention]

Что же касается основных звуковых характеристик микрофона, то этот вопрос следует разобрать более подробно и посвятить отдельную статью, что и будет сделано в скором времени.

Удачных покупок и творческих успехов!

Источник: https://pop-music.ru/articles/zvuk-v-tsifrakh/

Акустические системы: поговорим о звуке (часть 1)

Мера звука

В учебнике сказано: «Колебательные движения частиц, которое распространяется в виде волн в газообразной, жидкой или твердой средах». Давайте отбросим лишнее и поговорим только о слышимом звуке (кроме него ведь еще существуют ультразвук, инфразвук и т.д.).

Звук — это, на самом деле, не движение воздуха (газа) в пространстве, а волновые, периодические изменения давления этого самого газа.

Звук является волновым излучением, подчиняется соответствующим физическим законам, которые описывают его распространение и взаимодействия.

Согласно этим законам мы можем описать звук по нескольким характеристикам. Возьмем основные: частота, амплитуда (форма колебаний) и скорость.

Что такое частота звука?

Частота — это количество колебаний за единицу времени. Конкретней — число колебаний в секунду. Измеряется в герцах. Одно колебание в секунду — один герц (Гц).

Если еще вспомнить, что звук распространяется в воздухе со скоростью около 350 метров в секунду или около 1250 км/ч, то достаточно легко понять, что частота и скорость связаны между собой.

И эта связь дает нам возможность определить длину звуковой волны: чем больше частота, тем меньше длина волны — и наоборот.

Почти традиционно считается, что человеческий слух позволяет услышать диапазон частот «20–20» — от 20 Гц до 20 кГц, другими словами, от 20 колебаний в секунду до 20 000.

Не все частоты одинаково громкие

При этом матушка-природа наделила нас с вами достаточно избирательным слухом. Психоакустические исследования показывают, что лучше всего человек слышит самое для себя важное — человеческую речь. Эти звуки располагаются в диапазоне частот в районе 3000 Гц. Где-то в этом районе и находится максимальная чувствительность наших с вами ушей.

На других частотах она уменьшается, изменяясь в виде плавных кривых. Эти кривые показывают, с какой громкостью человек воспринимает звуковые колебания равной амплитуды. Эти данные важны не только для расчета акустических систем, но и для правильного понимания природы восприятия звука.

Они были получены статистическим способом, когда в субъективном оценивании громкости звучания на разных частотах принимало участие большое количество людей. В честь авторов этой научной разработки линии равной громкости называются кривыми Флетчера-Мэнсона.

Как мы понимаем, откуда пришел звук

Ответ простой: потому, что у нас есть голова и два уха! Если одно ухо вдруг не работает, это можно частично компенсировать быстрым поворотом головы. Слух при наличии двух ушей называется бинауральным. Он позволяет нам локализовать источник звука.

Это происходит потому, что звук приходит к правому и левому уху с небольшой задержкой или, если выразиться точнее, со сдвигом по фазе. Так как длина звуковой волны достаточно большая, в оба уха обычно поступает одна волна, но разные ее участки — фазы.

Этот сдвиг анализируется нашим мозгом, легкий поворот головы — и мы уже готовы приблизительно указать на какой ветке сидит птица, хотя разглядеть ее все равно не получится.

И чем выше звук, то есть, чем больше его частота, тем легче определить направление на его источник — сильнее проявляется фазовый сдвиг. А вот на низких частотах длина волны становится больше, чем расстояние между ушами, поэтому определить источник звука гораздо сложнее.

Почему одни звуки красивые, а другие нет?

Здесь почему-то тянет взять серый том Фейнмановских лекций и освежить воспоминания о рядах Фурье — но будем проще: любое колебание можно разложить на несколько колебаний с меньшей длиной волн.

Эти меньшие волны — и есть гармоники, и сколько их укладывается в длине основной волны — две, три и т.д. — определяет их четность или нечетность. Как оказалось, нечетные гармоники воспринимаются нашим слухом дискомфортно.

Причем вроде все играет правильно, но дискомфорт остается.

Более явный неприятный звук — диссонанс, две частоты, работающие одновременно и вызывающие редкие биения. Если хотите еще наглядней, то нажмите близлежащие черную и белую клавиши на пианино.

[attention type=red]

Есть и противоположность диссонанса — консонанс. Это сама благозвучность, например, — такой интервал, как октава (удвоение частоты), квинта или кварта. Кроме того, комфортности звучания мешают маскирующие его шумы различной природы, искажения и призвуки.

[/attention]

Ясно, что шум — то, что мешает в принципе. Звуковой мусор. Впрочем, есть и белый шум, этакий эталон шума, в котором присутствуют равномерно все частоты (точнее — спектральные составляющие).

Если вы хотите уйти от источника белого шума, то по ходу удаления он будет розоветь. Это происходит потому, что воздух сильнее ослабляет верхние частоты слышимого спектра.

Когда их меньше, тогда говорят о розовом шуме.

Чем громче шум по отношению к полезному звуку, тем больше этот звук маскируется шумом. Падает комфортность, а затем — и разборчивость звучания. Это же относится и к нечетным гармоникам, и к нелинейным искажениям, о которых мы еще поговорим более подробно. Все эти явления взаимосвязаны и, самое главное, — все они мешают нам слушать.

Нота — высота звука и его частота — зависит от специальности

В понимании звука, судя по всему, есть две крайности — понимание звукоинженера и музыканта. Первый говорит «440 Гц!» второй — «нота Ля!». И оба правы.

Первый говорит «частота», второй — «высота звука». Впрочем, известно немало отличных музыкантов, которые вовсе не знали нот.

При этом специалистов в области акустики, не знающих физических основ в этой области, еще никому не удавалось встретить.

Важно понимать, что оба этих специалиста по-своему занимаются комфортным звучанием.

Автор музыкального произведения, инстинктивно, или опираясь на консерваторские знания, строит звук на принципах гармонии, не допуская диссонансов или искажений.

Конструктор, создающий колонки, изначально не допускает посторонних призвуков, минимизирует искажения, заботится о равномерности амплитудно-частотной характеристики, динамике и многом, многом другом.

Громкость, звуковое давление — пределы и ориентиры

С громкостью все не так просто. Она относительна. Подумайте сами, ведь абсолютной тишины не существует. То есть, она в природе есть, но попадание в такое место превращается в пытку — вы начинаете слышать стук своего сердца, звон в ушах — все равно тишина исчезает.

Поэтому звуковое давление измеряется относительно некоего нулевого уровня в децибелах (дБ). Это логарифмические единицы, ведь логарифмическая шкала наиболее точно соответствует природе слуха.

Если немного углубиться в теорию, нужно вспомнить эмпирически установленный закон психофизиологии Вебера-Фехнера, который описывает работу органов чувств.

Согласно этому закону, интенсивность ощущения чего-либо прямо пропорциональна логарифму интенсивности раздражителя. В случае звука, это — амплитуда (размах) колебаний.

[attention type=green]

И если за ноль децибел принять порог слышимости (а это, повторимся, не тишина!), то шелест листьев дает 10 дБ, поезд метро — 100 дБ, истребитель на форсаже — 125 дБ, и ненамного меньше, кстати, выдала одна девчушка, призер соревнований по громкости крика в США. В дискотечном зале громкость может достигать 130 дБ. Это при том, что 120 дБ — уже больно, а 180 — могут убить.

[/attention]

Разница приблизительно в шесть децибел воспринимается нами, как удвоение громкости. Добавление трех децибел на низкой частоте требует удвоения амплитуды колебаний источника звука, но на слух это замечает не каждый слушатель! Такие вот парадоксальные, на первый взгляд, данные.

Поведение звука

Оно всегда предсказуемо, если вооружиться определенными знаниями. Звук может отражаться от поверхности, поглощаться ею, проникать сквозь нее. При этом каждый вариант — лишь частичный.

Отражение звука приводит к эффекту эхо, звукоинженеры еще называют его реверберацией. Это сложный процесс. В любой комнате есть своя реверберация, многократная, по-своему затухающая, с определенными частотными характеристиками.

Затухающая потому, что часть звука все-таки поглощается стенами.

Но если звук сделать громче, то, в зависимости от выбранного звукового давления, через некоторое время (оно линейно зависит от громкости в дБ) в стену начнут стучать соседи. Это значит, мы выяснили, что часть звука проходит сквозь стену. Правильное соотношение всех этих свойств — очень важный параметр для комфортного звучания.

Та же реверберация должна быть оптимальной. Если ее практически нет, говорят, что комната переглушена. Если ее слишком много — вы слышали такое на вокзале, — страдает разборчивость звука. Существуют определенные критерии для правильной акустической обстановки, о них мы писали, например, в этой статье.

Еще один источник аудионегатива — резонирующие объекты. Скажем, хрусталь в стеклянном шкафу. И когда все эти факторы приведены в норму — поздравляю, мы с вами находимся в акустически комфортном помещении!

В таком помещении особенно хорошо звучит качественное аудиовоспроизводящее оборудование и его главная составляющая часть — акустические системы.

Об этом — в продолжении

Источник: https://stereo.ru/to/wct43-akusticheskie-sistemy-pogovorim-o-zvuke-chast-1

Медик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: