Межнейронный синапс

Содержание
  1. Межнейронные синапсы
  2. Эффекторные нервные окончания
  3. Чувствительные нервные окончания
  4. Синапс. Физиология мышечных волокон
  5. 4 этап
  6. 6 этап
  7. 10 этап
  8. Особенности проведения возбуждения в нервно-мышечном синапсе
  9. Физиология мышечных волокон
  10. Механизм сокращения поперечно-полосатых мышц
  11. Гладкие мышцы
  12. Синапс – это… Строение синапса. Нервный, мышечный и химический синапс
  13. Что же такое синапс?
  14. Из чего состоит синапс
  15. Медиаторы синапса
  16. Синапс: основные виды и функции
  17. Синапс химический
  18. Нервно-мышечный синапс
  19. Синаптическая щель среди пост- и пресинаптических мембран
  20. Дополнительные вещества, входящие в состав постсинаптической мембраны
  21. Синапс – что это такое, их виды и функции
  22. Что такое синапс
  23. Строение синапса
  24. Классификация синапсов
  25. Смотреть видео
  26. Нервно-мышечный синапс: его строение, возбуждение, принцип работы
  27. Определение синапса
  28. Виды синапсов
  29. Передача возбуждения в синапсах
  30. Синапс и медиаторы
  31. Рекомендованная литература и полезные ссылки

Межнейронные синапсы

Межнейронный синапс

Классификация.

По морфологическим особенностям межнейронные синапсы классифицируют в соответствии с тем, какими своими частями нейроны участвуют в их формировании: Аксо-аксональный синапс (импульс переходит с аксона на аксон), Аксо-соматический синапс (импульс переходит с аксона на тело нервной клетки), Аксо-дендритический синапс (импульс переходит с аксона на дендрит). По функции различают возбудительные и тормозные синапсы. Кроме того, синапсы классифицируют по механизму передачи нервного импульса. В соответствии с этим они бывают химические и электрические (электротонические) синапсы.

Химический синапс – передача осуществляется с помощью нейромедиатора и только в одном направлении, для проведения импульса через химический синапс нужно время.

Химический синапс состоит из пресинаптического и постсинаптического полюсов, а между ними находится синаптическая щель. Пресинаптический полюс образуется концевыми частями аксона: он ограничен пресинаптической мембраной (аксолеммой).

Отличительной особенностью пресинаптического полюса является наличие в нём синаптических пузырьков, содержащих нейромедиатор. В нём имеется уникальная сеть цитоскелетных структур, направляющая движение синаптических пузырьков к пресинаптической мембране.

В пресинаптическом полюсе имеются митохондрии, обеспечивающие энергией синтез медиатора, накапливающегося в синаптических пузырьках.

Постсинаптический полюс состоит из постсинаптической мембраны, в которой есть рецепторы для нейромедиатора. Постсинаптическая мембрана принадлежит той клетке, на которую передается импульс.

Синаптическая щель – пространство между пре – и постсинаптической мембранами, ширина которого – около 200 нм.

Передача сигнала в химическом синапсе. Нервный импульс, распространяясь по аксону, доходит до пресинаптической мембраны.

Под действием нервного импульса в пресинаптический полюс из внеклеточного пространства входят ионы кальция, что активирует внутриклеточные сигнальные пути и побуждает к миграции синаптических пузырьков в направлении пресинаптической мембраны.

[attention type=yellow]

При контакте с нею мембрана пузырьков сливается с пресинаптической мембраной и содержащийся в них нейромедиатор по типу экзоцитоза высвобождается в синаптическую щель и достигает постсинаптической мембраны, на которой имеются специфические рецепторы к данному медиатору.

[/attention]

Взаимодействие нейромедиатора с ними приводит к возникновению на постсинаптической мембране нервного импульса (потенциала действия). На каждый нервный импульс, поступающий из пресинаптического полюса, высвобождается определенная порция или квант медиатора.

При этом, чем чаще следуют нервные импульсы, тем больше медиатора высвобождается и тем сильнее возбуждаются рецепторы постсинаптической мембраны, но до определенного предела, так как перевозбуждение её рецепторов может привести к их нечувствительности (рефрактерности) к действию новых порций медиатора и, таким образом, синаптическая передача будет блокирована.

В процессе слияния мембран синаптических пузырьков с пресинаптической мембраной её поверхность увеличивается, и одновременно с этим в пресинаптическом полюсе происходит обратный процесс, а именно путём эндоцитоза в нём образуются и отшнуровываются пузырьки, которые со временем снова заполняются медиатором.

При этом в такие пузырьки попадает и медиатор, уже находящийся в синаптической щели. Это явление называется Обратным нейрональным захватом медиатора. Таким образом, путем удаления излишков нейромедиатора предотвращается перевозбуждение рецепторов постсинаптической мембраны и переход их в фазу рефрактерности.

Электрический синапс – представляет собой скопление нексусов. Передача сигнала в электрическом синапсе осуществляется без нейромедиатора. При этом импульс может передаваться как в прямом, так и в обратном направлении без какой-либо задержки.

Эффекторные нервные окончания

Эффекторные (двигательные и секреторные) нервные окончания построены также, как и межнейронные синапсы. К ним относятся аксо-мышечный синапс, или моторная бляшка (импульс переходит с аксона на мышечное волокно или кардиомиоцит), аксо-вазальный синапс (импульс переходит с аксона на кровеносный сосуд), нейрожелезистый синапс (импульс переходит с аксона на секреторную клетку) и т. д.

Чувствительные нервные окончания

Чувствительные (рецепторные) нервные окончания (рецепторы) Концевые аппараты дендритов афферентных нейронов, воспринимающие раздражения. Они классифицируются по нескольким признакам

По морфологическим признакам они бывают Свободные, Которые образованы только терминальными разветвлениями дендрита чувствительного нейрона, и Несвободные, В которіх терминальные разветвления дендрита покрыты олигодендроцитами.

Несвободные, в свою очередь, подразделяются на неинкапсулированные, которые не имеют соединительнотканной капсулы, и капсулированные, имеющие соединительнотканную капсулу, заполненную, как правило, видоизмененными олигодендроцитами.

Внутрь такой капсулы входит дендрит чувствительного нейрона и разветвляется среди видоизмененных олигодендроцитов.

• ПО локализации чувствительные нервные окончания делятся на экстеро – и интерорецепторы; одни из них воспринимают сигналы из внешней среды, а другие – от внутренних органов.

• По характеру воспринимаемого раздражения различают вкусовые, болевые, термо-, баро – и проприорецепторы.

В многослойных эпителиях различают клетки Меркэля, которые относят к механорецепторным (касательным) одиночным сенсоэпителиоцитам (см. «Эпителиальные ткани»).

Источник: https://veterinarua.ru/tkani/90-mezhnejronnye-sinapsy-effektornye-nervnye-okonchaniya.html

Синапс. Физиология мышечных волокон

Межнейронный синапс

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

Синапс — это специфическое место контакта двух возбудимых систем (клеток) для передачи возбуждения.

«synapsis» — «соприкосновение, соединение, застежка»

на новости сайта в соцсетях!

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

По способу передачи сигналов:

  • механические,
  • химические,
  • электрические.

По виду медиатора: холинэргические и др.

Нервно-мышечный синапс (НМС) — химический, передача с помощью медиатора ацетилхолина.

Синонимы к слову НМС:

  • Нервно-мышечное соединение;
  • Моторная концевая пластинка.

Аксоны нервных клеток на своих окончаниях теряют миелиновую оболочку, ветвятся, и концевые веточки аксона утолщаются. Это пресинаптическая терминаль или бляшка или пуговка, которая погружается в углубление на поверхности мышечного волокна.

Покрывающая концевую веточку аксона поверхностная мембрана называется пресинаптической мембраной, т.е. это мембрана, покрывающая поверхность синаптической бляшки (терминали аксона).

Мембрана, покрывающая мышечное волокно в области синапса, называется постсинаптической мембраной, или концевой пластинкой. Она имеет извитую структуру, образуя многочисленные складки, уходящие вглубь мышечного волокна, за счет чего увеличивается площадь контакта.

[attention type=red]

На постсинаптической мембране находятся белковые структуры — рецепторы, способные связывать медиатор. В одном синапсе количество рецепторов достигает 10-20 млн.

[/attention]

Между пре- и постсинаптическими мембранами находится синаптическая щель, размеры ее в среднем 50 нм, она открывается в межклеточное пространство и заполнена межклеточной жидкостью.

В синаптической щели находится мукополисахаридное плотное вещество в виде полосок, мостиков и содержится фермент ацетилхолинэстераза.

В пресинаптической терминали находится большое количество пузырьков или везикул, заполненных медиатором — химическим веществом посредником, осуществляющим передачу возбуждения.

В нервно-мышечном синапсе медиатор — ацетилхолин (АХ).

АХ синтезируется из холина и уксусной кислоты (ацетил-коэнзима А) с помощью фермента холинэстеразы. Эти вещества перемещаются из тела нейрона по аксону к пресинаптической мембране. Здесь в пузырьках происходит окончательное образование АХ.

3 фракции медиатора:

  1. Первая фракция — доступная — располагается рядом с пресинаптической мембраной.
  2. Вторая фракция — депонированная — располагается над первой фракцией.
  3. Третья фракция — диффузно рассеянная — наиболее удаленная от пресинаптической мембраны.

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

6 этап

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

10 этап

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Особенности проведения возбуждения в нервно-мышечном синапсе

Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.

Суммация возбуждения соседних постсинаптических мембран.

Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.

Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.

[attention type=green]

Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.

[/attention]

Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.

Законы проведения возбуждения по нервам:

  1. Закон функциональной целостности нерва.
  2. Закон изолированного проведения возбуждения.
  3. Закон двустороннего проведения возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.

Физиология мышечных волокон

Три типа мышц:

  • скелетная (40-50% массы тела),
  • сердечная (менее 1%),
  • гладкая (8-9%).

Физиологические свойства скелетных мышц:

  1. Возбудимость — способность отвечать на действие раздражителя возбуждением.
  2. Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
  3. Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
  4. Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.

Физические свойства скелетных мышц:

  1. Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
  2. Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
  3. Силы мышц — способность мышцы поднять максимальный груз.
  4. Способность мышцы совершать работу.

Режимы сокращения:

  • Изотонический,
  • Изометрический,
  • Ауксотонический.

Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).

Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).

Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).

Механизм сокращения поперечно-полосатых мышц

Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).

Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин.

Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.

Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.

Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.

Тропонин образует утолщение на конце каждой нити тропомиозина.

Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.

В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.

Эти постики совершают «гребущие движения», в результате чего нити актина перемещаются этими мостиками относительно волокон миозина, происходит укорочение мышцы.

Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.

При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).

Гладкие мышцы

Гладкие мышцы — это мышцы, формирующие слой стенок полых внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток без поперечной исчерченности за счет хаотичного расположения миофибрилл.

Особенности гладких мышц:

  • Иннервируются волокнами вегетативной нервной системы (ВНС);
  • Обладают низкой возбудимостью:
  • Обладают низкой величиной МП (мембранного потенциала) — -50 — -60 мВ из-за более высокой проницаемости для ионов Na+
  • ПД (потенциал действия) отличается меньшей амплитудой и большей длительностью. Он формируется в основном за счет ионов Ca2+
  • Медленная проводимость:

Клетки в гладких мышцах функционально связаны между собой посредством щелевидных контактов — нексусов, которые имеют низкое электрическое сопротивление. За счет этих контактов ПД распространяется с одного мышечного волокна на другое, охватывая большие мышечные пласты, и в реакцию вовлекается вся мышца.

Гладкие мышцы способны осуществлять относительно медленные ритмические и длительные тонические сокращения.

Медленные ритмические сокращения обеспечивают перемещение содержимого органа из одной области в другую.

[attention type=yellow]

Длительные тонические сокращения, особенно сфинктеров полых органов, препятствуют выходу из них содержимого.

[/attention]

Это способность сохранять приданную им при растяжении или деформации форму. Благодаря пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии.

Особенность гладких мышц, отличающая их от скелетных. Благодаря автоматии гладкие мышцы могут сокращаться в условиях отсутствия иннервации. Важную роль в этом играет растяжение.

Растяжение является адекватным раздражителем для гладкой мускулатуры. Сильное и резкое растяжение гладких мышц вызывает их сокращение.

Сравнительная характеристика скелетных и гладких мышц:

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/sinaps-fiziologiya-myshechnyh-volokon

Синапс – это… Строение синапса. Нервный, мышечный и химический синапс

Межнейронный синапс

Синапс – это определенная зона контакта отростков нервных клеток и остальных невозбудимых и возбудимых клеток, которые обеспечивают передачу информационного сигнала. Синапс морфологически образуется контактирующими мембранами 2-х клеток.

Мембрана, относящаяся к отростку нервных клеток, зовется пресинаптической мембраной клетки, в которую поступает сигнал, второе ее название – постсинаптическая. Вместе с принадлежностью постсинаптической мембраны синапс может быть межнейрональным, нейромышечным и нейросекреторным.

Слово синапс было введено в 1897 г. Чарльзом Шеррингтоном (англ. физиологом).

Что же такое синапс?

Синапс – это специальная структура, которая обеспечивает передачу от нервного волокна нервного импульса на другое нервное волокно или нервную клетку, а чтобы произошло воздействие на нервное волокно от рецепторной клетки (области соприкосновения друг с другом нервных клеток и другого нервного волокна), требуется две нервные клетки.

Синапс – это небольшой отдел в окончании нейрона. При его помощи идет передача информации от первого нейрона ко второму. Синапс находится в трех участках нервных клеток. Также синапсы находятся в том месте, где нервная клетка вступает в соединение с разными железами или мышцами организма.

Из чего состоит синапс

Строение синапса имеет простую схему. Он образуется из 3-х частей, в каждой из которых осуществляются определенные функции во время передачи информации. Тем самым такое строение синапса можно назвать подходящим для передачи нервного импульса.

Непосредственно на процесс передачи информации воздействуют две главные клетки: воспринимающая и передающая. В конце аксона передающей клетки находится пресинаптическое окончание (начальная часть синапса).

Оно может повлиять в клетке на запуск нейротрансмиттеров (это слово имеет несколько значений: медиаторы, посредники или нейромедиаторы) – определенные химические вещества, с помощью которых между 2-мя нейронами реализуется передача электрического сигнала.

Синаптической щелью является средняя часть синапса – это промежуток между 2-мя вступающими во взаимодействие нервными клетками. Через эту щель и поступает от передающей клетки электрический импульс.

Конечной частью синапса считается воспринимающая часть клетки, которая и является постсинаптическим окончанием (контактирующий фрагмент клетки с разными чувствительными рецепторами в своей структуре).

Медиаторы синапса

Медиатор (от латинского Media – передатчик, посредник или середина). Такие медиаторы синапса очень важны в процессе передачи нервного импульса.

Морфологическое различие тормозного и возбуждающего синапса заключается в том, что они не имеют механизм освобождения медиатора. Медиатор в тормозном синапсе, мотонейроне и другом тормозном синапсе считается аминокислотой глицином.

Но тормозной или возбуждающий характер синапса определяется не их медиаторами, а свойством постсинаптической мембраны. К примеру, ацетилхолин дает возбуждающее действие в нервно-мышечном синапсе терминалей (блуждающих нервов в миокарде).

[attention type=red]

Ацетилхолин служит возбуждающим медиатором в холинэргических синапсах (пресинаптическую мембрану в нем играет окончание спинного мозга мотонейрона), в синапсе на клетках Рэншоу, в пресинаптическом терминале потовых желез, мозгового вещества надпочеников, в синапсе кишечника и в ганглиях симпатической нервной системы. Ацетилхоли-нестеразу и ацетилхолин нашли также во фракции разных отделов мозга, иногда в большом количестве, но кроме холинэргического синапса на клетках Рэншоу пока не смогли идентифицировать остальные холинэргические синапсы. По словам ученых, медиаторная возбуждающая функция ацетилхолина в ЦНС весьма вероятна.

[/attention]

Кателхомины (дофамин, норадреналин и адреналин) считаются адренэргическими медиаторами. Адреналин и норадреналин синтезируются в окончании симпатического нерва, в клетке головного вещества надпочечника, спинного и головного мозга. Аминокислоты (тирозин и L-фенилаланин) считаются исходным веществом, а адреналин заключительным продуктом синтеза.

Промежуточное вещество, в которое входят норадреналин и дофамин, тоже выполняют функцию медиаторов в синапсе, созданных в окончаниях симпатических нервов.

Эта функция может быть либо тормозной (секреторные железы кишечника, несколько сфинктеров и гладкая мышца бронхов и кишечника), либо возбуждающей (гладкие мышцы определенных сфинктеров и кровеносных сосудов, в синапсе миокарда – норадреналин, в подкровных ядрах головного мозга – дофамин).

Когда завершают свою функцию медиаторы синапса, катехоламин поглощается пресинаптическим нервным окончанием, при этом включается трансмембранный транспорт. Во время поглощения медиаторов синапсы находятся под защитой от преждевременного истощения запаса на протяжении долгой и ритмичной работы.

Синапс: основные виды и функции

Лэнгли в 1892 году было предположено, что синаптическая передача у вегетативной ганглии млекопитающих не электрической природы, а химической. Через 10 лет Элиоттом было выяснено, что из надпочечников адреналин получается от того же воздействия, что и стимуляция симпатических нервов.

После этого предположили, что адреналин способен секретироваться нейронами и при возбуждении выделяться нервным окончанием. Но в 1921 году Леви сделал опыт, в котором установил химическую природу передачи в вегетативном синапсе среди сердца и блуждающих нервов. Он заполнил сосуды сердца лягушки физиологическим раствором и стимулировал блуждающий нерв, создавая замедление сердцебиения.

Когда жидкость перенесли из заторможенной стимуляции сердца в нестимулированое сердце, оно билось медленнее. Ясно, что стимуляция блуждающего нерва вызвала освобождение в раствор тормозящего вещества. Ацетилхолин целиком воспроизводил эффект этого вещества. В 1930 г.

роль в синаптической передаче ацетилхолина в ганглии вегетативной нервной системе окончательно установил Фельдберг и его сотрудник.

Синапс химический

Химический синапс принципиально отличается передачей раздражения при помощи медиатора с пресинапса на постсинапс. Поэтому и образуются различия в морфологии химического синапса.

Химический синапс более распространен в позвоночной ЦНС. Теперь известно, что нейрон способен выделять и синтезировать пару медиаторов (сосуществующих медиаторов).

Нейроны тоже имеют нейромедиаторную пластичность – способность изменять главный медиатор во время развития.

Нервно-мышечный синапс

Данный синапс осуществляет передачу возбуждения, однако эту связь могут разрушить различные факторы.

Передача заканчивается во время блокады выбрасывания в синаптическую щель ацетилхолина, также и во время избытка его содержания в зоне постсинаптических мембран.

Множество ядов и лекарственных препаратов влияют на захват, выход, который связан с холинорецепторами постсинаптической мембраны, тогда мышечный синапс блокирует передачу возбуждения. Организм гибнет во время удушья и остановки сокращения дыхательных мышц.

[attention type=green]

Ботулинус – микробный токсин в синапсе, он блокирует передачу возбуждения, разрушая в пресинаптическом терминале белок синтаксин, управляемый выходом в синаптическую щель ацетилхолина.

[/attention]

Несколько отравляющих боевых веществ, фармокологических препаратов (неостигмин и прозерин), а также инсектициды блокируют проведение возбуждения в нервно-мышечный синапс при помощи инактивации ацетилхолинэстеразы – фермента, который разрушает ацетилхолин.

Поэтому идет накопление в зоне постсинаптической мембраны ацетилхолина, снижается чувствительность к медиатору, производится выход из постсинаптических мембран и погружение в цитозоль рецепторного блока. Ацетилхолин будет неэффективен, и синапс будет заблокирован.

Синапс – это соединение места контакта среди двух клеток. Причем каждая из них заключена в свою электрогенную мембрану.

Нервный синапс состоит из трех главных компонентов: постсинаптическая мембрана, синаптическая щель и пресинаптическая мембрана. Постсинаптическая мембрана – это нервное окончание, которое проходит к мышце и опускается внутрь мышечной ткани.

В пресинаптической области имеются везикулы – это замкнутые полости, имеющие медиатор. Они всегда находятся в движении.

Подходя к мембране нервных окончаний, везикулы сливаются с ней, и медиатор попадает в синаптическую щель. В одной везикуле содержится квант медиатора и митохондрии (они нужны для синтеза медиатора – главного источника энергии), далее синтезируется из холина ацетилхолин и под воздействием фермента ацетилхолинтрансферразы перерабатывается в ацетилСоА).

Синаптическая щель среди пост- и пресинаптических мембран

В разных синапсах величина щели различна. Это пространство наполнено межклеточной жидкостью, в которой имеется медиатор. Постсинаптическая мембрана накрывает место контакта нервного окончания с иннервируемой клеткой в мионевральном синапсе. В определенных синапсах постсинаптическая мембрана создает складку, возрастает контактная площадь.

Дополнительные вещества, входящие в состав постсинаптической мембраны

В зоне постсинаптической мембраны присутствуют следующие вещества:

– Рецептор (холинорецептор в мионевральном синапсе).

– Липопротеин (обладает большой схожестью с ацетилхолином). У этого белка присутствует электрофильный конец и ионная головка.

Головка поступает в синаптическую щель, происходит взаимодействие с катионовой головкой ацетилхолина.

Из-за этого взаимодействия идет изменение постсинаптической мембраны, затем происходит деполяризация, и раскрываются потенциально зависимые Na-каналы. Деполяризация мембраны не считается самоподкрепляющим процессом;

– Градуален, его потенциал на постсинаптической мембране зависит от числа медиаторов, то есть потенциал характеризуется свойством местных возбуждений.

– Холинэстераза – считается белком, у которого имеется ферментная функция. По строению она схожа с холинорецептором и обладает похожими свойствами с ацетилхолином.

[attention type=yellow]

Холинэстеразой разрушается ацетилхолин, вначале тот, который связан с холинорецептором. Под действием холинэстеразы холинорецептор убирает ацетилхолин, образуется реполяризация постсинаптической мембраны.

[/attention]

Ацетилхолином расщепляется до уксусной кислоты и холина, необходимого для трофики мышечной ткани.

При помощи действующего транспорта выводится на пресинаптическую мембрану холин, он используется для синтеза нового медиатора. Под воздействием медиатора меняется проницаемость в постсинаптической мембране, а под холинэстеразой чувствительность и проницаемость возвращается к начальной величине. Хеморецепторы способны вступать во взаимодействие с новыми медиаторами.

Источник: https://FB.ru/article/139361/sinaps---eto-stroenie-sinapsa-nervnyiy-myishechnyiy-i-himicheskiy-sinaps

Синапс – что это такое, их виды и функции

Межнейронный синапс

Нервная система, как известно, состоит из нейронов. Эти особые клетки умеют принимать, хранить и обрабатывать информацию, они отвечают за связь организма с внешним миром и за работу всех систем этого организма.

Память, внимание, мышление, воображение, творчество – всё это результаты работы нейронов. Однако вся эта многообразная деятельность не могла бы осуществиться, не будь у нейрона такого важного элемента, как синапс.

В определённом смысле именно синапсы, а не сами нейроны, являются основой нервной системы.

Что такое синапс

Если сказать слишком упрощённо, то синапс – это место стыковки двух нервных клеток.

Казалось бы, что здесь особенного? Но на самом деле синапс – это довольно сложное устройство, благодаря которому весь механизм сбора и обработки информации может исправно работать.

Синапс – это то, что позволяет превратить простейшие сигналы и безусловные рефлексы в сложнейшие образцы мыслительной деятельности: представления, идеи, образы, произведения искусства, научные теории. Каково же строение синапса?

Строение синапса

Каждая нервная клетка имеет большое количество отростков. Все эти отростки, кроме одного, являются дендритами; это короткие и сильно разветвлённые образования, которые предназначены для приёма информации от других нейронов. Оставшийся длинный отросток называется аксоном; он отвечает за передачу информации от данной нервной клетки к следующей.

Соединяясь между собой отростками, нервные клетки образуют сложную сеть, по которой в разные стороны перемещаются сигналы. Разрозненные сигналы от периферической нервной системы попадают в центральную, где из них организм формирует целостную картину мира, решает, как ему поступать в дальнейшем, и посылает сигналы к нужным органам.

Аксон нервной клетки может достигать внушительной длины – до полутора метров. И это только в организме человека. У жирафов аксоны в спинном мозге могут достигать и пяти метров. По-видимому, у более крупных вымерших животных, например, динозавров, аксоны нервных клеток в спинном мозге были ещё длиннее.

Выходит, что нервные клетки являются самыми крупными клетками в организме.

Однако чаще всего напрямую от одной нервной клетки к другой сигнал пройти не может, потому что пространство между дендритами и аксоном заполнено межклеточным веществом.

Чтобы нервная информация прошла от одного отростка к другому, нужно соорудить своеобразный мост.

Такие мосты называются нейротрансмиттерами, или нейромедиаторами; образуются они в результате биохимических реакций и представляют собой белковые молекулы.

Сами нервные клетки очень маленькие – крупнейшие из них обычно не превышают длины 100 микрометров. Отростки нейронов, следовательно, имеют и вовсе микроскопические размеры. Однако даже на таком микроскопическом уровне строение синапса довольно сложное. Он состоит из трёх отделов.

[attention type=red]

Первый – утолщение на конце аксона, называемое пресинапсической мембраной и необходимое для формирования нейромедиаторов. Второй отдел – аналогичное утолщение на конце дендрита, которое служит для приёма сигналов от нейромедиатора.

[/attention]

Между ними находится третий отдел – сама синаптическая щель, в которой нейромедиаторы образуются.

Но строение синапса этим не ограничивается. На утолщении аксона имеются особые образования – синаптические пузырьки, которые содержат либо нейромедиатор, либо фермент, разрушающий нейромедиатор. А на утолщении дендрита имеются рецепторы, принимающие сигналы от конкретного нейромедиатора.

Данное строение синапса характерно для химического типа. Есть ещё электрические синапсы, имеющие несколько другую структуру. Нейромедиаторов они не образуют, поскольку электрические сигналы беспрепятственно проходят сквозь межклеточное вещество.

При этом расстояние между мембранами в электрическом синапсе гораздо меньше, чем в химическом, благодаря чему давление межклеточного вещества более слабое. Кроме того, мембраны соединены так называемыми коннексонами – особыми белковыми образованиями.

Бывают ещё и смешанные синапсы, в которых химическая связь является фактором, усиливающим электрическую передачу сигнала.

Наиболее распространёнными являются химические синапсы, которые являются типовой разновидностью. Особенно велика их роль в нервной системе млекопитающих.

Как мы уже выяснили, синапсы служат для соединения нервных клеток и передачи между ними химических и электрических сигналов. Синапсы формируют нейронные цепи, которые, соединяясь между собой, образуют сложнейшие нейронные сети. Трудно представить себе, какие объёмы информации циркулируют в человеческой нервной системе.

Сегодня считается, что только в головном мозге содержится около 100 миллиардов нервных клеток; каждая из них имеет до десяти тысяч синапсов, то есть связей с другими клетками. Клетки обмениваются сигналами со скоростью 100 метров в секунду.

[attention type=green]

Таким образом, человеческий мозг представляет собой невероятный суперкомпьютер, возможностями превосходящий всё интернет-пространство планеты. Недавно учёные смоделировали секундную активность головного мозга на одном из самых мощных суперкомпьютеров в мире; и на нём эта секунда «растянулась» на целых сорок минут.

[/attention]

Так что, по-видимому, искусственный интеллект ещё не скоро по-настоящему заменит естественный человеческий мозг.

Собственно говоря, уровень интеллекта человека и других животных в большей степени зависит не от объёма мозга и не от количества нейронов в нём, а от количества связей между нейронами.

Поэтому совсем не удивительно, почему животные со значительно меньшими габаритами головного мозга иногда показывают более высокую интеллектуальную активность, чем животные с большим объёмом мозга.

Так, поведение муравьёв иногда кажется сопоставимым с человеческим, хотя настоящего головного мозга у них, как и у других насекомых, нет вовсе. Ящерицы, наоборот, имеют настоящий мозг, однако их умственные способности куда скромнее.

Здесь секрет состоит ещё и в том, что муравьи помимо «внутренней» нервной системы имеют своеобразную «внешнюю»: каждого муравья в сообществе можно представить как некий меганейрон, связанный с другими такими же муравьями, из-за чего образуется единый «групповой интеллект».

Аксоны и дендриты образуются в нервных клетках не сразу. Причём первым пробивается именно аксон, который начинает усиленно расти и прокладывать себе путь в окружающем пространстве. Так начинается рост самой нервной клетки. В конце концов аксон встречается с дендритами других нервных клеток и вместе с ними образует синапс.

Из структуры синапса понятно, что передача нервных импульсов является односторонней. То есть невозможен обратный путь сигнала – от дендритов к аксону. Кроме того, передача сигнала производится с небольшой задержкой – так называемой «синаптической задержкой», которая составляет около 0,5 миллисекунд.

[attention type=yellow]

Известно, что в нервной системе содержатся нейроны, не имеющие аксонов. Как работают такие клетки и для чего они нужны – пока никто не знает.

[/attention]

Интересно, что исследования работы нервных клеток учёные проводили на кальмарах. Их нервные клетки настолько большие, что видны невооружённым глазом. Это позволило вставлять в них электроды и измерять электрический потенциал в разных частях клетки. Исследователи Ходжкин, Элкс и Хаксли за такую работу в 1963 году удостоились Нобелевской премии.

Классификация синапсов

Существует несколько классификаций соединений нервных клеток. Первую из них мы рассмотрели выше – это деление на химические, электрические и смешанные синапсы.

Также синапсы можно разделить по характеру передаваемого сигала: возбуждающие и тормозящие.

Синапсы могут быть разделены и по месту расположения: центральные, находящиеся в головном мозге, и периферические, расположенные в периферической нервной системе.

Также синапсы делят в зависимости от производимых нейромедиаторов. Одни производят норадреналин, другие – ацетилхолин, серотонин, глутамат и другие. Всего существует около шестидесяти видов нейромедиааторов, каждый из которых несёт специфическую функцию. Так, норадреналин является возбуждающим веществом, он активизирует все системы организма, порождает чувство ярости.

Дофамин – гормон счастья, который сообщает организму состояние блаженства, порождает позитивные эмоции; также он отвечает за познавательные процессы. Как переизбыток, так и недостаток нейромедиаторов приводит к различным нарушениям в нервной системе и организме в целом. Так, недостаток дофамина порождает депрессию, упадок сил, приводит к слабоумию.

Переизбыток глутамата может привести к гибели нервных клеток.

Строение и функционирование биологической нервной системы позволило учёным создать её искусственный аналог. В искусственной нейронной сети соединения между отдельными «нейронами» также именуют синапсами, есть в их составе и «дендриты», и «аксоны».

В искусственных нейронных сетях удаётся смоделировать даже отдельные типы сигналов – так, есть здесь сигналы возбуждающие и тормозящие.

Конечно, искусственная нейронная сеть является упрощённой моделью настоящей, биологической, но по мере развития технологий модель становится более детализированной. Так, в 2015 году в Швеции исследователи создали один из наиболее совершенных на сегодняшний день искусственных аналогов нейрона.

Устройство было создано на основе органической биоэлектроники. Такой искусственный нейрон наиболее полноценно повторяет работу естественной нервной клетки и может даже общаться с другими нейронами.

Смотреть видео

Источник: https://PsyLogik.ru/224-sinaps.html

Нервно-мышечный синапс: его строение, возбуждение, принцип работы

Межнейронный синапс

  • Определение синапса
  • Виды синапсов
  • Передача возбуждения в синапсах
  • Строение синапса
  • Синапс и медиаторы
  • Рекомендованная литература и полезные ссылки
  • Очевидно, что если бы все люди одновременно перестали и понимать, и говорить, то умолкли бы заводы и фабрики, встали поезда, распались государства, исчезла цивилизация. Но ведь любой человек — тоже своего рода государство, густо заселенное гражданами-клетками. Каждая из них — индивидуальность, каждая дышит, работает, ест. Но жить отдельно — как это делают, например, инфузории — наши клетки уже не могут. Они непрерывно передают друг другу и другим клеткам свои сообщения. Но как? При помощи так званных синаптических рецепторов.

    Определение синапса

    По-видимому, тут нужно объяснять каждое слово. «Синапсом» называется контакт между нервными клетками или между нервным окончанием и мышечным волокном.

    «Рецепторами» в биологии обычно называют чувствительные образования глаза, уха, носа. Но тут речь идет о другом значении этого слова.

    Молекулярные рецепторы — белковые молекулы, которые улавливают специальные вещества-передатчики (их называют медиаторами), выделяющиеся из нервных окончаний.

    Как и другие клетки, нервные клетки в лабораторных условиях живут в солевом растворе, напоминающем по своему составу морскую воду: в нем много ионов натрия, хлора и мало калия. Наружный раствор отделен клеточной мембраной от внутренней части клетки — протоплазмы, в которой, наоборот, много ионов калия и мало — натрия и хлора.

    [attention type=red]

    Мембрана нейронов обладает замечательной способностью пропускать через себя одни ионы и не пропускать другие. Когда нейрон находится в покое, его мембрана избирательно проницаема для ионов калия.

    [/attention]

    Когда проницаемость изменяется, и притом определенным образом, нейрон генерирует нервный импульс-сигнал, который он передает другой клетке по нервному волокну.

    Окончания нервных волокон подходят к нейронам и мышечным волокнам очень близко, но не вплотную. Этот контакт двух клеток и есть синапс.

    Виды синапсов

    Синапсы бывают двух типов: химические и электрические. В синапсе между мембранами двух клеток остается щель шириной в несколько тысячных долей миллиметра.

    Нервный импульс не может через нее «перескочить» и, чтобы преодолеть эту «преграду», нейрон, передающий сигнал, вырабатывает специальное вещество-медиатор, которое воздействует на мембрану следующей клетки и меняет ее проницаемость для ионов. В результате следующая клетка начинает генерировать нервный импульс.

    Передача возбуждения в синапсах

    Механизм действия медиатора был изучен в серии работ английского ученого, лауреата Нобелевской премии Б. Катца и его сотрудников, которые в 1953 году обнаружили, что медиатор выделяется из нервных окончаний порциями.

    Каждая такая порция вызывает на мембране «отвечающей» клетки слабое изменение потенциала, которое обычно называют «миниатюрным потенциалом».

    Позднее с помощью электронного микроскопа, разделив предварительно синаптические нервные окончания на части, удалось выяснить, что медиатор в нервном окончании плотно упакован в маленькие синаптические пузырьки.

    Множество таких пузырьков плавает внутри окончания. Когда пузырек прилипает к наружной мембране нервного окончания, содержимое такого пузырька — «квант» возбуждения — выделяется в синаптическую щель. Так возникает один миниатюрный потенциал. Кванты выделяются и в покое, но Катц показал, что нервный импульс в тысячи раз увеличивает среднюю их частоту, не меняя величину отдельной порции.

    Но почему приходящий нервный импульс учащает слипание синаптических пузырьков с наружной мембраной нервного волокна? Сначала казалось, что причина очевидна. Нервный импульс, приходя к мембране, уменьшает на ней разность потенциалов.

    А еще раньше было известно, что в солевом растворе всевозможные воздействия, уменьшающие эту разность потенциалов, увеличивают частоту миниатюрных потенциалов. Но были поставлены другие опыты, в которых из наружного раствора удаляли ионы кальция, и тогда никакого увеличения частоты не наблюдалось, несмотря на приход нервного импульса.

    И наоборот, резко увеличить частоту выделения квантов можно безо всякого импульса — надо лишь поднять концентрации в наружном растворе любых непроникающих ионов или нейтральных молекул, например сахарозы.

    [attention type=green]

    Эта запутанная ситуация поставила в тупик английских исследователей. Распутать ее удалось авторам «кальциевой гипотезы» ученым Е. А. Либерману и его сотрудникам.

    [/attention]

    Они исходили из простой физической идеи: для слипания пузырьков с наружной мембраной надо уменьшить поверхностный электрический заряд мембран — а это делают ионы кальция, которые входят в нервное окончание из-за того, что приходит нервный импульс. Поэтому-то в растворе, лишенном кальция, нет синаптической передачи.

    Поскольку диаметр нервного окончания обычно меньше микрона, ввести туда ионы кальция для прямой проверки гипотезы нельзя.

    Но исследователи воспользовались тем, что кальций в нервных окончаниях всегда запасен в больших количествах внутри митохондрий, где его держит электрическое поле этих внутриклеточных «электростанций».

    Это позволило им, выбрасывая кальций из митохондрий различными агентами, снимающими электрическое поле, «ввести» кальций внутрь нервного окончания. Оказалось, что все вещества, снимающие электрическое поле на мембране митохондрий, резко повышают частоту выделения квантов ацетилхолина.

    В дальнейшем эстафета вновь перешла к англичанам — им удалось поставить прямые опыты на гигантских синапсах кальмаров, в которых толщина нервного волокна достигает миллиметра. Так была подтверждена гипотеза Е. А.

    Либермана о роли кальция в синаптической передаче.

    (Однако каким образом пузырек раскрывается, чтобы излить свое содержимое в синаптическую щель, как его мембрана становится частью поверхностной мембраны нервного волокна — эти вопросы до сих пор не имеют ответа.).

    После того как медиатор отработал, его нужно убрать. Для этого существуют разные механизмы. Один из них — ферменты-разрушители, молекулы, которые сидят в синаптической щели и разрезают медиатор на куски. Другой — клетка бережно собирает медиатор, чтобы использовать его вновь.

    Она втягивает внутрь себя часть мембраны, получившийся пузырек «отшнуровывается» и захватывает наружный раствор со всем его содержимым. Такой механизм удобен не только для клетки, но и для ученых, его изучающих. Используют его так: из обычного хрена выделяют фермент-разрушитель пироксидазу и вводят его в район синапса.

    [attention type=yellow]

    Нервное окончание заглатывает пироксидазу вместе с медиатором. Нейроны, пославшие свои отростки в место, куда была введена пироксидаза, теперь легко обнаружить по специальной окраске, которая возникает из-за того, что пироксидаза, работая, расщепляет перекись водорода и выделяет молекулярный кислород.

    [/attention]

    Так составляют карту связей между нейронами и разбирают принцип работы синапса.

    Синапс и медиаторы

    Медиаторов сейчас известно много, и число их постоянно растет. Обычно это сравнительно простые химические вещества — серотонин, допамин, норадреналин, но медиаторами являются и многие отдельные аминокислоты, а также соединения, состоящие из нескольких аминокислот,— полипептиды. Также медиатором служит еще и молекула всем известной АТФ.

    Поистине удивительно многообразна роль этого соединения! Оно и основной энергетический резерв клетки, и служит для синтеза РНК, и принимает участие в синтезе белков и в мышечном сокращении, и используется для фосфориллирования разных белков и участвует в ионном транспорте.

    А вот теперь оказывается, что АТФ — еще и медиатор, то есть выделяется из нервного окончания, сигнализируя: пришел нервный импульс.

    Трудно доказать, что такое «многостороннее» вещество, как АТФ, является медиатором. Все необходимые в этом случае проверки необыкновенно усложняются.

    Прежде всего, чтобы увериться, что данное вещество есть медиатор в данном синапсе, нужно показать, что оно выделяется из нервных окончаний в ответ на нервный импульс.

    Однако вездесущая АТФ может выделяться не только из изучаемых нервных окончаний, но и из находящихся рядом чувствительных нервных волокон и даже из мышечных волокон!

    Другая обязательная процедура — разделить синапс на части и попытаться обнаружить медиатор в синаптических пузырьках. Но АТФ есть во всех частях клетки! Наконец, третье необходимое доказательство — показать действие на постсинаптическую мембрану. Но и здесь АТФ может играть другую роль: служить источником энергии.

    Бернштоку и его сотрудникам потребовалось поставить множество тонких и трудоемких экспериментов, чтобы получить серьезные доводы в пользу своей гипотезы. Среди прочих медиаторов особое место у ацетилхолина.

    Дело не в том, что он был открыт первым и на нем были получены основные сведения о механизмах синаптической передачи.

    Просто «дедушка медиаторов» — это пока единственный, для которого выделены и хорошо очищены белковые рецепторы — вещества, безошибочно его улавливающие.

    Тут ученым крупно повезло: природа создала для них электрического ската.

    Килограмм ткани его электрического органа содержит до ста миллиграммов рецепторного белка, что в тысячу раз больше, чем в мышцах животных. Очищенные рецепторы ацетилхолина из электрического органа ската были встроены в искусственные биомолекулярные мембраны.

    [attention type=red]

    Эти мембраны под действием ацетилхолина меняли проницаемость для ионов натрия. Эксперимент грубо можно трактовать так. Молекула-рецептор содержит в себе канал, ворота которого обычно закрыты.

    [/attention]

    Медиатор меняет форму белка-рецептора и открывает ворота для ионов — через открытый канал в клетку идет натрий.

    Ионный канал в мембране — непростое устройство. В водном растворе ионы окружены диполями воды. Чтобы пройти мембрану, нужно сбросить водную оболочку, но энергетические затраты на это очень велики.

    А канал умело подменяет собой диполи воды. Ион раздевается «без затруднений» и, пройдя канал, аккуратно надевает новую водяную шубу.

    В результате ионы могут проходить сквозь мембрану за счет одной лишь энергии теплового движения.

    Искусственная система, состоящая из мембран с встроенными белковыми рецепторами, была детально описана ученым из Франции Ж. Л. Попо. К сожалению, искусственная система пока по непонятным причинам плохо моделирует нервно-мышечный синапс: препараты, которые на живых объектах четко блокируют действие ацетилхолина, в искусственных системах вызывают прямо противоположный эффект.

    Природа создала много медиаторов. Но этого ей показалось мало, и она сделала так, что один и тот же медиатор вызывает вдобавок у разных нейронов разные ответы.

    Француженка Жак Сю Кехое нашла целых три типа ответов на ацетилхолин у морского моллюска аплизии. Это небольшое животное стало классическим объектом нейрофизиологии. Дело в том, что для регистрации ответов нейронов нужно, проткнув мембрану, войти внутрь нейрона микроэлектродом — маленькой стеклянной пипеткой, заполненной раствором электролита.

    [attention type=green]

    Кончик ее не более микрона в диаметре, но беда в том, что размеры обычных нейронов не превышают 30—50 микрон, и потому для клетки введение электрода — то же, что для человека удар шпагой. А современная постановка опыта требует вводить в клетку два и даже три электрода.

    [/attention]

    Кроме того, нервные клетки у большинства животных спрятаны в глубине нервной ткани, искать нужный нейрон и вводить в него электрод приходится вслепую.

    Молюск аплизия.

    Аплизия же лишена всех этих недостатков: диаметр ее нейронов — сотни микрон, а нервная система устроена так, что клетки лежат на поверхности и так отчетливо видны, что ученые узнают многие из них «в лицо»: нейроны обладают характерной окраской, размерами, положением среди других клеток, типом активности. Трудно описать удовольствие, получаемое при работе с нейроном, который одновременно можно видеть.

    Возможно, что когда-нибудь аплизии, как и павловским собакам, поставят памятник. Если удастся сохранить в нем натуральные цвета этого моллюска, то сооружение получится не только впечатляющим, но и красивым.

    Итак, именно у аплизии Кехое исследовала реакцию нейронов на ацетилхолин. Внутрь нейрона она вводила два электрода: один для регистрации, другой для пропускания тока через мембрану. Кроме того снаружи к клетке подводили специальный электрод, заполненный раствором ацетилхолина.

    Этот электрод играл роль нервного окончания: из него определенными порциями можно было выпускать положительно заряженные молекулы медиатора. Кехое получила ответы на ацетилхолин, которые отличались и по величине, и по длительности, и по скорости возникновения. Кроме того, разные ответы исчезали под действием разных ядов.

    Удалось установить, что разные типы ответов были связаны с изменениями проницаемости мембраны для разных ионов.

    Физиологи нашли, что еще большее разнообразие ответов вызывает другой медиатор — серотонин. Эти работы были сделаны как на аплизии, так и на нейронах виноградной улитки.

    Группа нейронов улитки может со временем менять свои рецепторы серотонина и, вследствие этого, характер своего ответа на серотонин. А тип ответа зависит от того, проснулась ли улитка после зимней спячки или еще «дремлет».

    Итак, нейроны друг с другом связаны, нейроны друг с другом «говорят». Исследователи наблюдают за их общением и пытаются понять его механизмы. Известно довольно много: как клетки «шевелят губами», как «открывают рот», как «издают звуки»… Мы знаем: сейчас эта клетка отвечает другой. Но поймем ли мы когда-нибудь, о чем они говорят?

    С. Минина.

    Рекомендованная литература и полезные ссылки

    • Савельев А. В. Методология синаптической самоорганизации и проблема дистальных синапсов нейронов // Журнал проблем эволюции открытых систем. — Казахстан, Алматы, 2006. — Т. 8, № 2. — С. 96—104.
    • Экклз Д. К. Физиология синапсов. — М.: Мир, 1966. — 397 с.
    • French R.D. Some problems and sources in the foundation of modern physiology in Great Britain // Hist. Sci.. — 1971. — № 10. — С. 28-29.

    Источник: https://www.poznavayka.org/biologiya/sinaps/

    Медик
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: